\[\boxed{\text{292}\text{\ (292)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{a + 1^{\backslash a + 1}}{a - 2} + \frac{a - 4^{\backslash a - 2}}{a + 1} =\]
\[= \frac{3a + 3}{a^{2} - a - 2}\]
\[a^{2} - a - 2 = (a + 1)(a - 2)\]
\[a_{1} + a_{2} = 1;\ \ \ \ a_{1} \cdot a_{2} = - 2\]
\[a_{1} = 2;\ \ \ a_{2} = - 1.\]
\[\frac{2a^{2} - 7a + 6}{(a - 2)(a + 1)} = 0\]
\[2a^{2} - 7a + 6 = 0\]
\[D = 7^{2} - 4 \cdot 2 \cdot 6 = 49 - 48 = 1\]
\[a_{1} = \frac{7 - 1}{4} = 1,5;\ \ a_{2} = \frac{7 - 1}{4} = 2.\]
\[Ответ:при\ a = 1,5.\]
\[\textbf{б)}\ \frac{3a - 5}{a^{2} - 1} - \frac{6a - 5}{a - a^{2}} = \frac{3a + 2}{a^{2} + a}\]
\[\frac{3a - 5^{\backslash a}}{(a - 1)(a + 1)} - \frac{6a - 5^{\backslash a + 1}}{a(1 - a)} =\]
\[= \frac{3a + 2^{\backslash a - 1}}{a(a + 1)}\]
\[\frac{6a^{2} - 3a - 3}{a(a - 1)(a + 1)} = 0\]
\[6a^{2} - 3a - 3 = 0\ \ \ \ \ \ |\ :3\]
\[2a^{2} - a - 1 = 0\]
\[D = 1 + 4 \cdot 2 = 9\]
\[a_{1} = \frac{1 + 3}{4} = 1;\ \ \ \]
\[\text{\ \ }a_{2} = \frac{1 - 3}{4} = - \frac{1}{2}.\]
\[Ответ:a = - 0,5.\]
\[\boxed{\text{292.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
Пояснение.
Решение.
\[\mathbf{Выражение\ под\ знаком\ корня\ }\]
\[\mathbf{должно\ быть\ }\]
\[\mathbf{неотрицательным\ }\left( \mathbf{\geq 0} \right)\mathbf{.}\]
\[\textbf{а)}\ y = \sqrt{(5 - x)(x + 8)}\]
\[(5 - x)(x + 8) \geq 0\]
\[(x + 8)(x - 5) \leq 0\]
\[x \in \lbrack - 8;5\rbrack.\]
\[\textbf{б)}\ y = \sqrt{(x + 12)(x - 1)(x - 9)}\]
\[(x + 12)(x - 1)(x - 9) \geq 0\]
\[x \in \lbrack - 12;1\rbrack \cup \lbrack 9;\ + \infty).\ \]