\[\boxed{\text{268}\text{\ (268)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[5x^{6} + 6x^{4} + x^{2} + 4 = 0\]
\[5x^{6} + 6x^{4} + x^{2} = - 4\]
\[так\ как\ \ 5x^{6} \geq 0;\ \]
\[6x^{4} \geq 0;\ \]
\[x^{2} \geq 0;\]
\[получаем,\ что\ в\ левой\ части\ \]
\[уравения\ неотрицательное\ \]
\[число,\]
\[а\ в\ правой - число\ \]
\[отрицательное;\]
\[уравнение\ \ 5x^{6} + 6x^{4} + x^{2} +\]
\[+ 4 = 0\ не\ имеет\ корней.\]
\[\boxed{\text{268.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ x² < 16\]
\[x^{2} - 16 < 0\]
\[(x - 4)(x + 4) < 0\]
\[x \in ( - 4;4).\]
\[\textbf{б)}\ x² \geq 3\]
\[x^{2} - 3 \geq 0\]
\[\left( x - \sqrt{3} \right)\left( x + \sqrt{3} \right) \geq 0\]
\[x \in \left( - \infty;\ - \sqrt{3} \right\rbrack \cup \left\lbrack \sqrt{3}; + \infty \right).\]
\[\textbf{в)}\ 0,2x² > 1,8\]
\[0,2x^{2} - 1,8 > 0\]
\[x^{2} - 9 > 0\]
\[(x - 3)(x + 3) > 0\]
\[x \in ( - \infty;\ - 3) \cup (3;\ + \infty).\]
\[\textbf{г)} - 5x^{2} \leq x\]
\[5x^{2} + x \geq 0\]
\[x(5x + 1) \geq 0\]
\[x \in ( - \infty; - 0,2\rbrack \cup \lbrack 0; + \infty).\]
\[\textbf{д)}\ 3x² < - 2x\]
\[3x^{2} + 2x < 0\]
\[x(3x + 2) < 0\]
\[x \in \left( - \frac{2}{3};0 \right).\]
\[\textbf{е)}\ 7x < x²\]
\[x^{2} - 7x > 0\]
\[x(x - 7) > 0\]
\[x \in ( - \infty;0) \cup (7; + \infty).\]