\[\boxed{\text{264}\text{\ (264)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ y = - \sqrt{x}\]
\[\textbf{б)}\ y = - \sqrt[3]{x}\]
\[\textbf{в)}\ y = \sqrt{- x}\]
\[\textbf{г)}\ y = \sqrt[3]{- x}\]
\[График\ функции\ y = - \sqrt{x}\ \]
\[симметричен\ графику\ \]
\[функции\ y = \sqrt{- x}\]
\[относительно\ начала\ \]
\[координат.\]
\[Графики\ функции\ y = - \sqrt[3]{x}\ и\ \ \]
\[y = \sqrt[3]{- x}\text{\ \ }совпадают.\]
\[\boxed{\text{264.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ x^{2} + 2x - 48 < 0\]
\[x^{2} + 2x - 48 = 0\]
\[D_{1} = 1 + 48 = 49\ \ \]
\[x_{1} = - 1 - 7 = - 8,\ \ \]
\[x_{2} = - 1 + 7 = 6\]
\[(x + 8)(x - 6) < 0\]
\[x \in ( - 8;6).\]
\[\textbf{б)}\ 2x^{2} - 7x + 6 > 0\]
\[2x^{2} - 7x + 6 = 0\]
\[D = 49 - 4 \cdot 2 \cdot 6 = 1\]
\[x_{1} = \frac{7 + 1}{4} = 2;\ \ \ x_{2} =\]
\[= \frac{7 - 1}{4} = 1,5;\]
\[2 \cdot (x - 2)(x - 1,5) > 0\]
\[x \in ( - \infty;1,5) \cup (2;\ + \infty).\]
\[\textbf{в)} - x^{2} + 2x + 15 < 0\]
\[x^{2} - 2x - 15 > 0\]
\[x^{2} - 2x - 15 = 0\]
\[D_{1} = 1 + 15 = 16\]
\[x_{1} = 1 + 4 = 5;\ \ \ x_{2} =\]
\[= 1 - 4 = - 3.\]
\[(x - 5)(x + 3) > 0\]
\[x \in ( - \infty;\ - 3) \cup (5;\ + \infty).\]
\[\textbf{г)} - 5x^{2} + 11x - 6 > 0\]
\[5x^{2} - 11x + 6 < 0\]
\[5x^{2} - 11x + 6 = 0\]
\[D = 121 - 4 \cdot 5 \cdot 6 = 1\]
\[x_{1} = \frac{11 - 1}{10} = 1;\ \ \ \]
\[\ x_{2} = \frac{11 + 1}{10} = 1,2;\]
\[x \in (1;1,2).\]
\[\textbf{д)}\ 4x^{2} - 12x + 9 > 0\]
\[(2x - 3)^{2} > 0\]
\[2x - 3 = 0\]
\[2x = 3\]
\[x = 1,5.\]
\[x \in ( - \infty;1,5) \cup (1,5; + \infty).\]
\[\textbf{е)}\ 25x^{2} + 30x + 9 < 0\]
\[(5x + 3)^{2} < 0 \Longrightarrow решений\ нет.\]
\[\textbf{ж)} - 10x^{2} + 9x > 0\]
\[- 10x(x - 0,9) > 0\]
\[10x(x - 0,9) < 0\]
\[x = 0;\ \ x = 0,9.\]
\[x \in (0;0,9).\]
\[\textbf{з)} - 2x^{2} + 7x < 0\ \]
\[2x(x - 3,5) > 0\]
\[x = 0;\ \ \ x = 3,5.\]
\[x \in ( - \infty;0) \cup (3,5;\ + \infty).\]