\[\boxed{\text{241}\text{\ (241)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = ax^{2} + c\ \ \]
\[ax^{2} + c = 0\]
\[x^{2} = - \frac{c}{a}.\]
\[Уравнение\ имеет\ решение\ при:\]
\[1)\ a \neq 0,\ \ c = 0;\]
\[2)\ a > 0,\ \ c \leq 0;\]
\[3)\ a < 0,\ \ c \geq 0.\]
\[\boxed{\text{241.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \frac{5a + 7 - 28a^{2}}{20a} = a²\]
\[5a + 7 - 28a^{2} = 20a^{3},\]
\[\ \ a \neq 0\]
\[20a^{3} + 28a^{2} - 5a - 7 = 0\]
\[(5a + 7)\left( 4a^{2} - 1 \right) = 0\]
\[(5a + 7)(2a - 1)(2a + 1) = 0\]
\[a_{1} = - 1,4;\ \ \ \ \ a_{2} = \frac{1}{2},\]
\[\text{\ \ }a_{3} = - \frac{1}{2}.\]
\[Ответ:при\ \ a = - 1,4;\ \]
\[\ a = \pm 0,5.\]
\[\textbf{б)}\ \frac{2 - 18a^{2} - a}{3a} = - 3a²\]
\[2 - 18a² - a = - 9a^{3},\ \ a \neq 0\]
\[9a^{3} - 18a^{2} - a + 2 = 0\]
\[\left( 9a^{2} - 1 \right)(a - 2) = 0\]
\[(3a - 1)(3a + 1)(a - 2) = 0\]
\[a_{1} = \frac{1}{3},\ \ a_{2} = - \frac{1}{3},\ \ \]
\[a_{3} = 2.\]
\[Ответ:при\ \ a = 2;\ \ a = \pm \frac{1}{3}.\]