Решебник по алгебре 9 класс Макарычев Задание 234

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 234

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{234\ (234).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ y = x^{3}\]

\[Чтобы\ получить\ график\ y =\]

\[= - x^{3},\ необходимо\ y =\]

\[= x^{3}\ отразить\ \]

\[вертикально,\ относительно\ \]

\[оси\ \text{Ox}.\]

\[Чтобы\ получить\ y = (x - 3)^{3},\]

\[\ необходимо\ y = x^{3}\ сдвинуть\ \]

\[на\ 3\ единицы\ вправо.\]

\[Чтобы\ получить\ y = x^{3} + 4,\ \]

\[необходимо\ y = x^{3}сдвинуть\ \]

\[на\ 4\ единицы\ вверх.\]

\[\textbf{б)}\ y = \sqrt{x}\ \]

\[Чтобы\ получить\ график\ \ y =\]

\[= - \sqrt{x}\ необходимо\ отразить\ \]

\[y = \sqrt{x}\]

\[\ относительно\ оси\ \text{Ox.}\]

\[Чтобы\ получить\ y = \sqrt{x} + 5,\ \]

\[необходимо\ y = \sqrt{x}\text{\ \ }\]

\[сдвинуть\ на\ 5\ единиц\ вверх.\]

\[Чтобы\ получить\ y = \sqrt{x} - 1,\ \]

\[необходимо\ y = \sqrt{x}\ сдвинуть\ \]

\[на\ 1\ единицу\ вниз.\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{234.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[\textbf{а)}\ \frac{5y^{3} - 15y^{2} - 2y + 6}{y^{2} - 9} = 0\]

\[\frac{5y^{2}(y - 3) - 2 \cdot (y - 3)}{y^{2} - 9} = 0\]

\[\frac{\left( 5y^{2} - 2 \right)(y - 3)}{(y - 3)(y + 3)} = 0\]

\[\frac{5y^{2} - 2}{y + 3} = 0\]

\[5y^{2} = 2\]

\[y^{2} = \frac{2}{5}\]

\[y = \pm \sqrt{\frac{2}{5}}.\]

\[Ответ:y = \pm \sqrt{\frac{2}{5}}.\]

\[\textbf{б)}\ \frac{3y^{3} - 12y^{2} - y + 4}{9y^{4} - 1} = 0\]

\[\frac{3y^{2}(y - 4) - (y - 4)}{9y^{4} - 1} = 0\]

\[\frac{(y - 4)\left( 3y^{2} - 1 \right)}{\left( 3y^{2} - 1 \right)\left( 3y^{2} + 1 \right)} = 0\]

\[\frac{y - 4}{3y^{2} + 1} = 0\]

\[y - 4 = 0\]

\[y = 4.\]

\[Ответ:y = 4.\]

\[\textbf{в)}\ \frac{6x^{3} + 48x^{2} - 2x - 16}{x^{2} - 64} = 0\]

\[\frac{6x^{2}(x + 8) - 2 \cdot (x + 8)}{x^{2} - 64} = 0\]

\[\frac{\left( 6x^{2} - 2 \right)(x + 8)}{(x - 8)(x + 8)} = 0\]

\[\frac{6x^{2} - 2}{x - 8} = 0\]

\[6x^{2} - 2 = 0\]

\[6x^{2} = 2\]

\[x^{2} = \frac{1}{3}\]

\[x = \pm \sqrt{\frac{1}{3}}\]

\[Ответ:x = \pm \sqrt{\frac{1}{3}}.\]

\[\textbf{г)}\ \frac{y^{3} - 4y^{2} - 6y + 24}{y^{3} - 6y} = 0\]

\[\frac{y^{2}(y - 4) - 6 \cdot (y - 4)}{y\left( y^{2} - 6 \right)} = 0\]

\[\frac{\left( y^{2} - 6 \right)(y - 4)}{y\left( y^{2} - 6 \right)} = 0\]

\[\frac{y - 4}{y} = 0\]

\[y - 4 = 0\]

\[y = 4\]

\[Ответ:y = 4.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам