\[\boxed{\text{186\ (186).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = \frac{2x + 5}{x - 3} = \frac{2x - 6 + 11}{x - 3} =\]
\[= \frac{2x - 6}{x - 3} + \frac{11}{x - 3} =\]
\[= \frac{2 \cdot (x - 3)}{x - 3} + \frac{11}{x - 3} =\]
\[= 2 + \frac{11}{x - 3};\]
\[Дробь\ \ \ \frac{11}{x - 3}\text{\ \ }должна\ быть\ \]
\[натуральной \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} 11 = x - 3 \\ 1 = x - 3\ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = 14 \\ x = 4\ \ \\ \end{matrix} \right.\ \]
\[x = 14:\]
\[y = 2 + \frac{11}{14 - 3} = 2 + 1 = 3.\]
\[x = 4:\]
\[y = 2 + \frac{11}{4 - 3} = 2 + 11 = 13.\]
\[Искомые\ точки:\ \ (14;3)\ и\ \]
\[\ (4;13).\]
\[\boxed{\text{186.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ f(x);\ \ g(x) - четные\ \]
\[функции.\]
\[f( - x) = f(x);\ \ g( - x) = g(x)\]
\[y( - x) = f( - x) + g( - x) =\]
\[= f(x) + g(x) = y(x).\]
\[\textbf{б)}\ f(x);g(x) - нечетные\ \]
\[функции.\]
\[f( - x) = - f(x);g( - x) = - g(x)\]
\[y( - x) = - f(x) - g(x) =\]
\[= - \left( f(x) + g(x) \right) = - y(x).\]
\[Что\ и\ требовалось\ доказать.\]