\[\boxed{\text{159\ (159).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 19^{2} = 361 \Longrightarrow \sqrt{361} = 19\]
\[\textbf{б)}\ 7^{3} = 343 \Longrightarrow \sqrt[3]{343} = 7\]
\[\textbf{в)}\ \left( \frac{1}{2} \right)^{6} = \frac{1}{64} \Longrightarrow \sqrt[6]{\frac{1}{64}} = \frac{1}{2}\]
\[\textbf{г)}\ \left( \frac{2}{3} \right)^{5} = \frac{32}{243} \Longrightarrow \sqrt[5]{\frac{32}{243}} = \frac{2}{3}\]
\[\textbf{д)}\ 1^{10} = 1 \Longrightarrow \sqrt[10]{1} = 1\]
\[\textbf{е)}\ 0^{7} = 0 \Longrightarrow \sqrt[7]{0} = 0\]
\[\textbf{ж)}\ \sqrt{7 - 4\sqrt{3}} = \sqrt{4 + 3 - 4\sqrt{3}} =\]
\[= \sqrt{4 - 4\sqrt{3} + 3} = \sqrt{\left( 2 - \sqrt{3} \right)^{2}} =\]
\[= 2 - \sqrt{3}\]
\[\textbf{з)}\ \sqrt{9 - 4\sqrt{5}} = \sqrt{5 - 4\sqrt{5} + 4} =\]
\[= \sqrt{\left( \sqrt{5} - 2 \right)^{2}} = \sqrt{5} - 2\ \ \]
\[\boxed{\text{159.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[Прямая\ касается\ параболы \Longrightarrow\]
\[\Longrightarrow есть\ только\ одна\ точка\ \]
\[пересечения\]
\[(то\ есть\ D = 0):\]
\[6x + b = x^{2} + 8\]
\[x^{2} - 6x + 8 - b = 0\]
\[D = 3^{2} - (8 - b) = 9 - 8 + b =\]
\[= 1 + b = 0\]
\[b = - 1\]
\[Ответ:при\ b = - 1.\]