\[\boxed{\text{157\ (157).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[y = \sqrt{x}\]
\[\text{A\ }(144;12):\ \ \ \]
\[y(144) = \sqrt{144} =\]
\[= 12 - принадлежит;\]
\[\text{B\ }(169;\ - 13):\ \ \]
\[\ y(169) = \sqrt{169} =\]
\[= 13 \neq - 13 - не\ принадлежит;\]
\[\text{C\ }( - 100;10):\ \ \ \]
\[y( - 100) =\]
\[= \sqrt{- 100} - не\ принадлежит.\]
\[\boxed{\text{157.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ y = x^{2} - 4x - 4\]
\[x_{0} = \frac{4}{2} = 2;\]
\[y(2) = 4 - 8 - 4 = - 8.\]
\[Ответ:\ - 8.\]
\[\textbf{б)}\ y = - x^{2} - 4x + 5\]
\[x_{0} = - \frac{4}{2} = - 2;\]
\[y( - 2) = - 4 + 8 + 5 = 9.\]
\[Ответ:9.\]
\[\textbf{в)}\ y = x^{2} - 6x - 6\]
\[x_{0} = \frac{6}{2} = 3;\]
\[y(3) = 9 - 18 - 6 = - 15.\]
\[Ответ:\ - 15.\]
\[\textbf{г)}\ y = - x^{2} - 3x + 2\]
\[x_{0} = - \frac{3}{2} = - 1,5;\]
\[y( - 1,5) = - 2,25 + 4,5 + 2 =\]
\[= 4,25.\]
\[Ответ:4,25.\]