\[\boxed{\text{1061\ (1061).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x³ - 9x^{2} + mx - 15 = 0\]
\[Используя\ теорему\ Виета,\ \]
\[составим\ систему\ уравнений:\]
\(\left\{ \begin{matrix} x_{1} + x_{2} + x_{3} = 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{1} = m \\ x_{1} \cdot x_{2} \cdot x_{3} = 15\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \).
\[По\ условию,\ числа\ x_{1},x_{2},x_{3}\ \]
\[входят\ в\ арифметическую\ \]
\[прогрессию:\]
\[x_{2} = x_{1} + d,\ \ x_{3} = x_{1} + 2d.\]
\[x_{1} + x_{2} + x_{3} =\]
\[= x_{1} + x_{1} + d + x_{1} + 2d =\]
\[= 3x_{1} + 3d = 3x_{2} = 9 \Longrightarrow x_{2} = 3.\]
\[x_{1} \cdot x_{2} \cdot x_{3} =\]
\[= \left( x_{2} - d \right) \cdot x_{2} \cdot \left( x_{2} + d \right) =\]
\[= x_{2} \cdot \left( x_{2}^{2} - d^{2} \right) = 15,\]
\[x_{2}^{2} - d^{2} = 5\]
\[d^{2} = x_{2}^{2} - 5 = 9 - 5 = 4 \Longrightarrow\]
\[\Longrightarrow d = \pm 2.\]
\[\Longrightarrow x_{1} = 1,\ \ x_{2} = 3,\ \ \]
\[x_{3} = 5.\]
\[m = x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{1} =\]
\[= 1 \cdot 3 + 3 \cdot 5 + 5 \cdot 1 = 23.\]
\[Ответ:при\ m = 23.\]