\[\boxed{\mathbf{817\ (817).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[2)\ 4,\ 8,\ 16,\ 32,\ \ \]
\[b_{1} = 4;\ \ q = 2;\]
\[4)\ 81,\ 27,\ 9,\ 3,\ \ \]
\[b_{1} = 81;\ \ q = \frac{1}{3};\]
\[5)\ 2;\ - 2;2;\ - 2,\ \ \]
\[b_{1} = 2;\ \ q = - 1;\]
\[6) - \frac{1}{4},\ \ \ \frac{1}{2},\ - 1,\ 2,\ \ \]
\[b_{1} = - \frac{1}{4};\ \ q = - 2;\]
\[7) - 9;\ - 9;\ - 9;\ - 9,\ \ \]
\[b_{1} = - 9;\ \ q = 1;\]
\[9)\ \sqrt{2};2;2\sqrt{2};4,\ \ \]
\[b_{1} = \sqrt{2};\ \ q = \sqrt{2}.\]
\[\boxed{\mathbf{817.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\left\{ \begin{matrix} x - y = 2 \\ xy = a\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = y + 2\ \ \ \ \ \\ y(y + 2) = a \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\text{\ \ }\left\{ \begin{matrix} x = y + 2\ \ \ \ \ \ \ \ \ \ \ \ \\ y^{2} + 2y - a = 0 \\ \end{matrix} \right.\ \]
\[y^{2} + 2y - a = 0\]
\[D = 1 + a = 0\]
\[a = - 1\]
\[Ответ:\ a = - 1.\]
\[2)\ \left\{ \begin{matrix} x^{2} + y^{2} = 6 \\ x + y = a\ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} (a - y)^{2} + y^{2} = 6 \\ x = a - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[a^{2} - 2ay + y^{2} + y^{2} - 6 = 0\]
\[2y^{2} - 2ay + a^{2} - 6 = 0\]
\[D = 4a^{2} - 8 \cdot \left( a^{2} - 6 \right) = 4a^{2} -\]
\[- 8a^{2} + 48 = 48 - 4a^{2} = 0\]
\[4a^{2} = 48,\ \ a^{2} = 12,\]
\[\ \ a = \pm 2\sqrt{3}\]
\[Ответ:\text{\ a} = \pm 2\sqrt{3}\text{.\ }\]