\[\boxed{\mathbf{775\ (775).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\left\{ \begin{matrix} a_{6} + a_{8} - a_{14} = - 17 \\ a_{5} + a_{22} = 101\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} a_{1} + 5d + a_{1} + 7d - a_{1} - 13d = - 17 \\ a_{1} + 4d + a_{1} + 21d = 101\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} a_{1} - d = - 17\ \ \ | \cdot 2 \\ 2a_{1} + 25d = 101\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 2a_{1} - 2d = - 34 \\ 2a_{1} + 25d = 101 \\ \end{matrix} \right.\ ( - )\text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} - 27d = - 135 \\ a_{1} = d - 17\ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} d = 5\ \ \ \ \ \ \ \ \ \ \ \\ a_{1} = 5 - 17 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} d = 5\ \ \ \ \ \ \ \ \\ a_{1} = - 12 \\ \end{matrix} \right.\ \]
\[S_{20} = \frac{2a_{1} + 19d}{2} \cdot 20 =\]
\[= \frac{2 \cdot ( - 12) + 19 \cdot 5}{2} \cdot 20 =\]
\[= \frac{- 24 + 95}{2} \cdot 20 =\]
\[= 71 \cdot 10 = 710.\]
\[Ответ:710.\]
\[\boxed{\mathbf{775.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[3,1 < \sqrt{10} < 3,2\]
\[1)\ 6,2 < 2\sqrt{10} < 6,4\ \]
\[2) - 4 \cdot 3,2 < - 4\sqrt{10} < - 4 \cdot 3,1\]
\[- 12,8 < - 4\sqrt{10} < - 12,4\ \]
\[3)\ 3 \cdot 3,1 - 5 < 3\sqrt{10} -\]
\[- 5 < 3,2 \cdot 3 - 5\]
\[9,3 - 5 < 3\sqrt{10} - 5 < 9,6 - 5\]
\[4,3 < 3\sqrt{10} - 5 < 4,6\]