\[\boxed{\mathbf{765\ (765).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = - 6;\ \ d = 4\]
\[S_{n} = \frac{2a_{1} + d(n - 1)}{2} \cdot n\]
\[S_{12} = \frac{2a_{1} + 11d}{2} \cdot 12 =\]
\[= \frac{- 12 + 44}{2} \cdot 12 = 32 \cdot 6 = 192.\]
\[\boxed{\mathbf{765.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{1}{x^{2} + 2x} - \frac{2}{x^{2} - 4} = \frac{x + 4}{5x(2 - x)}\]
\[\frac{1^{\backslash 5(x - 2)}}{x(x + 2)} - \frac{2^{\backslash 5x}}{(x - 2)(x + 2)} + \frac{x + 4^{\backslash x + 2}}{5x(x - 2)} = 0\]
\[ОДЗ:\ \ x \neq 0;\ \ x \neq \pm 2.\]
\[5x - 10 - 10x + x^{2} + 4x + 2x + 8 = 0\]
\[x^{2} + x - 2 = 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 + 3}{2} = 1;\]
\[x_{2} = \frac{- 1 - 3}{2} = - 2\ (не\ подходит).\]
\[Ответ:\ \ x = 1.\]
\[2)\ \frac{2}{x^{2} - 2x + 1} - \frac{1}{x^{3} - 1} = \frac{3}{x^{2} + x + 1}\]
\[\frac{2^{\backslash x^{2} + x + 1}}{(x - 1)^{2}} - \frac{1^{\backslash x - 1}}{(x - 1)\left( x^{2} + x + 1 \right)} - \frac{3^{\backslash\text{(}x - 1)²}}{x^{2} + x + 1} = 0\]
\[ОДЗ:\ \ x \neq 1.\]
\[2x^{2} + 2x + 2 - x + 1 - 3\left( x^{2} - 2x + 1 \right) = 0\]
\[2x^{2} + x + 3 - 3x^{2} + 6x - 3 = 0\]
\[- x^{2} + 7x = 0\]
\[- x(x - 7) = 0\]
\[x = 0;\ \ x = 7.\]
\[Ответ:\ \ x = 0;x = 7.\]