\[\boxed{\mathbf{756\ (756).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Запишем:\ \]
\[\ \frac{1}{a + c} = \frac{\frac{1}{b + c} + \frac{1}{a + b}}{2}\text{\ \ }\]
\[\frac{2}{a + c} = \frac{1}{b + c} + \frac{1}{a + b}\]
\[\frac{2}{a + c} = \frac{a + b + b + c}{(b + c)(a + b)}\text{\ \ }\]
\[\frac{2}{a + c} = \frac{a + c + 2b}{(b + c)(a + b)}\text{\ \ }\]
\[\frac{2}{a + c} = \frac{a + c + 2b}{ab + b^{2} + ac + bc}\ \]
\[2 \cdot \left( ab + b^{2} + ac + bc \right) =\]
\[= (a + c)(a + c + 2b)\]
\[2ab + 2b^{2} + 2ac + 2bc =\]
\[= a^{2} + ac + 2ab + ac +\]
\[+ c^{2} + 2bc\]
\[2b^{2} = a^{2} + c^{2}\ или\ \ \ \ \]
\[b^{2} = \frac{a^{2} + c^{2}}{2}\text{\ \ }\]
\[Тогда:\ \ \]
\[a^{2},\ b^{2},\ c^{2} - тоже\ члены\]
\[\ арифметической\ прогрессии.\]