\[\boxed{\mathbf{744\ (744).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ a_{n} = 6 + 7n\]
\[a_{n + 1} - a_{n} = 6 + 7 \cdot (n + 1) -\]
\[- (6 + 7n) = 6 + 7n + 7 - 6 -\]
\[- 7n = 7 \Longrightarrow да,\]
\[d = 7;\ \ \ \ a_{1} = 6 + 7 \cdot 1 = 13.\]
\[2)\ a_{n} = \frac{2n - 1}{5}\]
\[a_{n + 1} - a_{n} = \frac{2 \cdot (n + 1) - 1}{5} -\]
\[- \frac{2n - 1}{5} =\]
\[= \frac{2n + 2 - 1 - 2n + 1}{5} =\]
\[= \frac{2}{5} \Longrightarrow да,\ \]
\[d = \frac{2}{5};\ \ \ a_{1} = (2 \cdot 1 - 1)\ :5 = \frac{1}{5}.\]
\[3)\ a_{n} = \frac{1}{n} + 2\]
\[a_{n + 1} - a_{n} = \frac{1}{n + 1} + 2 - \frac{1}{n} -\]
\[- 2 = \frac{1}{n + 1} - \frac{1}{n} = \frac{n - n - 1}{n(n + 1)} =\]
\[= - \frac{1}{n(n + 1)}\]
\[Не\ является.\]
\[Ответ:1)\ да:\ \ d = 7;\ a_{1} = 13;\ \]
\[\ 2)\ да:\ \ d = \frac{2}{5};\ \ a_{1} = \frac{1}{5};\ \ 3)\ нет.\]