\[\boxed{\mathbf{735\ (735).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = - 6;\ \ a_{7} = 3\]
\[a_{7} = a_{1} + 6d \Longrightarrow \ \ 6d = a_{7} - a_{1},\ \ \]
\[d = \frac{a_{7} - a_{1}}{6} = \frac{3 - ( - 6)}{6} =\]
\[= \frac{3 + 6}{6} = \frac{9}{6} = 1,5\]
\[Тогда\ \ a_{2} = - 6 + 1,5 = - 4,5\]
\[a_{3} = - 4,5 + 1,5 = - 3\]
\[a_{4} = - 3 + 1,5 = - 1,5\]
\[a_{5} = - 1,5 + 1,5 = 0\]
\[a_{6} = 0 + 1,5 = 1,5\]
\[Ответ:\ - 6;\ - 4,5;\ - 3;\]
\[\ - 1,5;0;1,5;3.\]
\[\boxed{\mathbf{735.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{2};\ - 1;\frac{1}{\sqrt{2}};\ldots\ \]
\[q = - \frac{1}{\sqrt{2}}\text{\ \ }\]
\[S = \frac{\sqrt{2}}{1 + \frac{1}{\sqrt{2}}} = \frac{\sqrt{2}}{\frac{\sqrt{2} + 1}{\sqrt{2}}} =\]
\[= \frac{\sqrt{2} \cdot \sqrt{2}}{\sqrt{2} + 1} = \frac{2}{\sqrt{2} + 1} =\]
\[= \frac{2 \cdot \left( \sqrt{2} - 1 \right)}{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} - 1 \right)} =\]
\[= \frac{2 \cdot \left( \sqrt{2} - 1 \right)}{2 - 1} =\]
\[= 2 \cdot \left( \sqrt{2} - 1 \right).\]
\[2)\ 3\sqrt{3};3;\sqrt{3};\ldots\ \]
\[\ q = \frac{3}{3\sqrt{3}} = \frac{1}{\sqrt{3}};\ \ \ \ \ \]
\[\ S = \frac{3\sqrt{3}}{1 - \frac{1}{\sqrt{3}}} = \frac{3\sqrt{3}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} =\]
\[= \frac{3\sqrt{3} \cdot \sqrt{3}}{\sqrt{3} - 1} = \frac{9}{\sqrt{3} - 1} =\]
\[= \frac{9 \cdot \left( \sqrt{3} + 1 \right)}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} =\]
\[= \frac{9 \cdot (\sqrt{3} + 1)}{3 - 1} = 4,5 \cdot \left( \sqrt{3} + 1 \right).\]
\[3)\ \frac{\sqrt{3} + 1}{\sqrt{3} - 1},\ 1,\ \frac{\sqrt{3} - 1}{\sqrt{3} + 1},\ldots\ \]
\[q = \frac{1 \cdot (\sqrt{3} - 1)}{\sqrt{3} + 1} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}\]
\[S = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}\ :\left( 1 - \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \right) =\]
\[= \frac{\sqrt{3} + 1}{\sqrt{3} - 1}\ :\left( \frac{\sqrt{3} + 1 - \sqrt{3} + 1\ }{\sqrt{3} + 1} \right) =\]
\[= \frac{\sqrt{3} + 1}{\sqrt{3} - 1}\ :\frac{2}{\sqrt{3} + 1} =\]
\[= \frac{\left( \sqrt{3} + 1 \right)\left( \sqrt{3} + 1 \right)}{\left( \sqrt{3} - 1 \right) \cdot 2} =\]
\[= \frac{\left( 3 - 2\sqrt{3} + 1 \right)\left( \sqrt{3} + 1 \right)}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right) \cdot 2} =\]
\[= \frac{\left( 4 - 2\sqrt{3} \right)\left( \sqrt{3} + 1 \right)}{2 \cdot \left( \sqrt{3} - 1 \right)} =\]
\[= \frac{4\sqrt{3} + 4 + 2 \cdot 3 + 2\sqrt{3}}{4} =\]
\[= \frac{6\sqrt{3} + 10}{4} = \frac{3\sqrt{3} + 5}{2}\]