\[\boxed{\mathbf{708\ (708).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{3x^{2} - 7x + 2}{2 - 6x}\]
\[3x^{2} - 7x + 2 = 0\]
\[D = 49 - 24 = 25\]
\[x_{1,2} = \frac{7 \pm 5}{6}\]
\[x = 2;\ \ \ \ x = \frac{1}{3}\]
\[\boxed{\mathbf{708.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\left\{ \begin{matrix} x_{3} = 24\ \ \\ x_{8} = 768 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x_{1}q^{2} = 24 \\ x_{1}q^{7} = 768 \\ \end{matrix}\text{\ \ }(\ :)\ \right.\ \text{\ \ \ \ \ \ }\]
\[\text{\ \ }\frac{x_{1}q^{2}}{x_{1}q^{7}} = \frac{24}{768}\text{\ \ }\]
\[\frac{1}{q^{5}} = \frac{24}{768}\]
\[q^{5} = \frac{768}{24}\text{\ \ }\]
\[q^{5} = 32 \Longrightarrow \ \ q = 2\]
\[x_{1} = \frac{24}{q^{2}} = \frac{24}{4} = 6\]
\[S_{7} = \frac{6 \cdot \left( 2^{7} - 1 \right)}{2 - 1} =\]
\[= 6 \cdot (128 - 1) =\]
\[= 6 \cdot 127 = 762.\]
\[Ответ:762.\]