\[\boxed{\mathbf{706\ (706).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 1,\ 4,\ 9,\ 25,\ \ldots,\ a_{n} = n^{2};\]
\[2)\ 5,\ 8,\ 11,\ 14,\ 17,\ \ldots,\ a_{n} =\]
\[= 3n + 2;\]
\[3)\ 0,\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\ \ldots,\ a_{n} = \frac{n - 1}{n};\]
\[4)\ 0,\ 2,\ 0,\ 2,\ 0,\ \ldots,\ a_{n} = ( - 1)^{n} + 1.\]
\[\boxed{\mathbf{706.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1) - 0,6;3;\ - 15;\ldots\ \]
\[\ b_{1} = - 0,6;\ \ \ \ \ q = - \frac{15}{3} = - 5:\]
\[S_{4} = \frac{- 0,6 \cdot \left( ( - 5)^{4} - 1 \right)}{- 5 - 1} =\]
\[= \frac{- 0,6 \cdot 624}{- 6} = 0,1 \cdot 624 = 62,4.\]
\[2)\ 56;42;31,5;\ldots\]
\[b_{1} = 56;\ \ q = \frac{42}{56} = \frac{3}{4}:\]
\[S_{4} = \frac{56 \cdot \left( \left( \frac{3}{4} \right)^{4} - 1 \right)}{\frac{3}{4} - 1\ } =\]
\[= \frac{56 \cdot \left( \frac{81}{256} - 1 \right)}{- \frac{1}{4}} =\]
\[= \frac{56 \cdot 175 \cdot 4}{1 \cdot 256 \cdot 1} = \frac{1225}{8} = 153\frac{1}{8}.\]