\[\boxed{\mathbf{704\ (704).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{n} = n^{2} - 3n - 8\ \ \]
\[n^{2} - 3n - 8 < 10\ \ \]
\[n^{2} - 3n - 18 < 0\]
\[n_{1} + n_{2} = 3,\ \ n_{1} = 6\]
\[n_{1}n_{2} = - 18,\ \ n_{2} = - 3\]
\[Так\ как\ номера - это\ \]
\[положительные\ числа,\ \]
\[тогда\ n \in \lbrack 1;6).\]
\[Ответ:n = \{ 1;2;3;4;5\}.\]
\[\boxed{\mathbf{704.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ b_{1} = 1,\ \ q = 2,\ \ n = 9:\ \ \]
\[S_{9} = \frac{1 \cdot \left( 2^{9} - 1 \right)}{2 - 1} =\]
\[= 512 - 1 = 511;\]
\[2)\ b_{1} = 15,\ \ q = \frac{2}{3},\]
\[\ \ n = 3:\ \]
\[S_{3} = \frac{15 \cdot \left( \left( \frac{2}{3} \right)^{3} - 1 \right)}{\frac{2}{3} - 1\ } =\]
\[\frac{15 \cdot \left( \frac{8}{27} - 1 \right)}{- \frac{1}{3}} = \frac{15 \cdot 19 \cdot 3}{27 \cdot 1} = \frac{95}{3};\]
\[3)\ b_{1} = 18,\ \ q = - \frac{1}{3},\]
\[\ \ n = 5:\ \ \]
\[S_{5} = \frac{18 \cdot \left( \left( - \frac{1}{3} \right)^{5} - 1 \right)}{- \frac{1}{3} - 1} =\]
\[= \frac{18 \cdot \left( - \frac{1}{243} - 1 \right)\ }{- \frac{4}{3}} =\]
\[= \frac{18 \cdot 244 \cdot 3}{243 \cdot 4} = \frac{122}{9};\]
\[4)\ b_{1} = 4,\ \ q = - \sqrt{2},\]
\[\ \ n = 4:\ \ \]
\[S_{4} = \frac{4 \cdot \left( \left( - \sqrt{2} \right)^{4} - 1 \right)}{- \sqrt{2} - 1} =\]
\[= \frac{4 \cdot (4 - 1)}{- \sqrt{2} - 1} = \frac{4 \cdot 3}{- \sqrt{2} - 1} =\]
\[= \frac{12 \cdot \left( \sqrt{2} - 1 \right)}{- \left( \sqrt{2} + 1 \right)\left( \sqrt{2} - 1 \right)} =\]
\[= \frac{12 \cdot \left( \sqrt{2} - 1 \right)}{- (2 - 1)} =\]
\[= \frac{12 \cdot \left( \sqrt{2} - 1 \right)}{- 1} =\]
\[= - 12 \cdot \left( \sqrt{2} - 1 \right) =\]
\[= 12 \cdot \left( 1 - \sqrt{2} \right).\]