\[\boxed{\mathbf{662\ (662).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ f(x) = \sqrt{3 - 5x - 2x^{2}}\]
\[3 - 5x - 2x^{2} \geq 0\]
\[2x^{2} + 5x - 3 \leq 0\]
\[D = 25 + 24 = 49\]
\[x_{1,\ 2} = \frac{- 5 \pm 7}{4}\]
\[x = - 3;\ \ x = 0,5\]
\[Ответ:x \in \lbrack - 3;0,5\rbrack\text{.\ }\]
\[2)\ f(x) = \frac{1}{\sqrt{3 - 5x - 2x^{2}}}\]
\[3 - 5x - 2x^{2} > 0\]
\[2x² + 5x - 3 < 0\]
\[из\ (1) \Longrightarrow x_{1,2} = \frac{- 5 \pm 7}{4}\]
\[x = - 3;\ \ x = 0,5\]
\[Ответ:x \in ( - 3;0,5).\]
\[3)\ f(x) = \sqrt{3 - 5x - 2x^{2}} +\]
\[+ \frac{1}{x^{2} - 9}\]
\[\left\{ \begin{matrix} 3 - 5x - 2x^{2} \geq 0 \\ x^{2} - 9 \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ ,\ \ из\ (1)\]
\[Ответ:x \in ( - 3;0,5).\]
\[4)\ f(x) = \sqrt{3 - 5x - 2x^{2}} +\]
\[+ \frac{2}{x^{2} + 2x}\]
\[\left\{ \begin{matrix} 3 - 5x - 2x^{2} \geq 0,\ \ из\ (1)\ \ \ \ x \in \left\lbrack - 3;\frac{1}{2} \right\rbrack \\ x² + 2x \neq 0,\ \ x \neq 0,\ \ x \neq - 2\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[Ответ:x \in \lbrack - 3;\ - 2) \cup\]
\[\cup \ ( - 2;0) \cup (0;0,5\rbrack.\]
\[\boxed{\mathbf{662.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{1}{216};\ \frac{1}{36};\ \frac{1}{6};\ldots\]
\[q = \frac{1}{36}\ :\frac{1}{216} = \frac{216}{36} = 6;\]
\[b_{5} = b_{1} \cdot q^{4} = \frac{1}{216} \cdot 6^{4} = \frac{6^{4}}{6^{3}} = 6.\]
\[Ответ:q = 6;\ \ \ b_{5} = 6.\]