\[\boxed{\mathbf{649\ (649).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[{Р\ (А) = \frac{4}{6} = \frac{2}{3};\ \ так\ как\ все\ }{равновозможные\ варианты:}\]
\[123,\ 132,\ 231,\ 213,\ 312,\ 321.\]
\[Ответ:\ \frac{2}{3}\text{.\ }\]
\[\boxed{\mathbf{649.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\sqrt{x^{2} + 1} + \sqrt{y^{2} + 1} =\]
\[= x^{2} + y^{2} + 2\]
\[Пусть\ x^{2} + 1 = a,\ \ \]
\[y^{2} + 1 = b,\ \ a \geq 0,\]
\[\ \ b \geq 0,\ \]
\[тогда\ \ \sqrt{x^{2} + 1} = a,\ \ \]
\[x^{2} + 1 = a^{2},\ \ x^{2} = a^{2} - 1,\]
\[\sqrt{y^{2} + 1} = b,\ \ y^{2} + 1 = b^{2},\]
\[\text{\ \ }y^{2} = b^{2} - 1,\ \ тогда\ \]
\[a^{2} - 1 + b^{2} - 1 = a + b\]
\[a^{2} + b^{2} = a + b \Longrightarrow подберем\]
\[\ решения:\ \ (0;0),\ (1;1),\ \]
\[(1;0),\ (0;1).\]
\[Если\ a = b = 0,\]
\[\text{\ \ }то\ \ \sqrt{x^{2} + 1} = 0,\ \ x^{2} \neq - 1,\]
\[\text{\ \ }\sqrt{y^{2} + 1} = 0,\ \ y^{2} \neq - 1.\]
\[Аналогично:\ \ (1;0)\ и\ \ (0;1).\]
\[Если\ \ a = b = 1,\]
\[\text{\ \ }\sqrt{x^{2} + 1} = 1,\ \ x^{2} + 1 = 1,\]
\[\ \ x² = 0,\ \ x = 0.\]
\[\sqrt{y^{2} + 1} = 1,\ \ y^{2} + 1 = 1,\ \]
\[\ y² = 0,\ \ y = 0.\]
\[Ответ:(0;0).\]