\[\boxed{\text{449\ (449).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left\{ \begin{matrix} x + y = 5 \\ xy = 6\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = 5 - x \\ y = \frac{6}{x}\text{\ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[y = 5 - x\]
\[x\] | \[1\] | \[2\] |
---|---|---|
\[y\] | \[4\] | \[3\] |
\[y = \frac{6}{x}\]
\[x\] | \[1\] | \[2\] | \[3\] | \[6\] | \[- 1\] | \[- 2\] | \[- 3\] | \[- 6\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[6\] | \[3\] | \[2\] | \[1\] | \[- 6\] | \[- 3\] | \[- 2\] | \[- 1\] |
\[Ответ:(2;3);\text{\ \ }(3;2).\]
\[2)\ \left\{ \begin{matrix} y + x^{2} = 3 \\ y = x - 1\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = 3 - x^{2} \\ y = x - 1\ \ \\ \end{matrix} \right.\ \]
\[y = 3 - x^{2}\]
\[график\ функции\ y = - x^{2}\ \]
\[поднять\ на\ 3\ единицы\ ввепх.\]
\[y = x - 1\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[- 1\] | \[0\] |
\[Ответ:( \approx - 2,5;\ - 3,5);\ \ \]
\[( \approx 1,5;\ \approx 0,6).\]
\[3)\ \left\{ \begin{matrix} x^{2} + y^{2} = 4 \\ x + y = 2\ \ \ \\ \end{matrix}\ \right.\ \text{\ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} x^{2} + y^{2} = 4 \\ y = 2 - x\ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + y^{2} = 4\]
\[\text{O\ }(0;0)\]
\[r = 2\]
\[y = 2 - x\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[2\] | \[1\] |
\[\]
\[Ответ:(0;2);\ \ (2;0)\]
\[4)\ \left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ xy = - 12\ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\text{\ \ }\left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ y = - \frac{12}{x}\text{\ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[x^{2} + y^{2} = 25\]
\[\text{O\ }(0;0)\]
\[r = 5\]
\[y = - \frac{12}{x}\ \]
\[x\] | \[2\] | \[6\] | \[1\] | \[12\] | \[- 2\] | \[- 6\] | \[- 1\] | \[- 12\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[- 6\] | \[- 2\] | \[- 12\] | \[- 1\] | \[6\] | \[2\] | \[12\] | \[1\] |
\[Ответ:( - 4;3);\ ( - 3;4);\ \]
\[(4;\ - 3);\ (3;\ - 4).\]
\[\boxed{\text{449.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = ax^{2} + bx - 4\]
\[\left\{ \begin{matrix} 9a - 3b - 4 = 8 \\ a + b - 4 = 4\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} 9a - 3b = 12 \\ a + b = 8\ \ | \cdot 9 \\ \end{matrix} \right.\ \]
\(\left\{ \begin{matrix} 9a - 3b = 12 \\ 9a + 9b = 72 \\ \end{matrix} \right.\ \ \ | -\)
\[- 12b = - 60\]
\[b = 5\]
\[a + 5 = 8\]
\[a = 3\]
\[Ответ:a = 3;\ \ b = 5.\]