\[\boxed{\text{409\ (409).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
\[Решение\ квадратных\ \]
\[неравенств.\]
Решение.
\[1)\ 2 \cdot (x^{2} + 2) \geq x(x + 5)\]
\[2x^{2} + 4 \geq x^{2} + 5x\]
\[2x^{2} + 4 - x^{2} - 5x \geq 0\]
\[x^{2} - 5x + 4 \geq 0\]
\[x_{1} + x_{2} = 5,\ \ x_{1} = 4\]
\[x_{1}x_{2} = 4,\ \ x_{2} = 1\]
\[Ответ:x \in ( - \infty;1\rbrack \cup \lbrack 4;\ + \infty).\]
\[2)\ x - (x + 4)(x + 5) > - 5\]
\[x - x^{2} - 9x - 20 + 5 > 0\]
\[- x^{2} - 8x - 15 > 0\]
\[x_{1} + x_{2} = - 8,\ \ x_{1} = - 5\]
\[x_{1}x_{2} = 15,\ \ x_{2} = - 3\]
\[Ответ:x \in ( - 5;\ - 3).\]
\[3)\ (6x - 1)(6x + 1) -\]
\[- (12x - 5)(x + 2) < 7 - 3x\]
\[36x^{2} - 1 - 12x^{2} - 19x +\]
\[+ 10 - 7 + 3x < 0\]
\[24x^{2} - 16x + 2 < 0\ \ |\ :2\]
\[12x^{2} - 8x + 1 < 0\]
\[D = 64 - 48 = 16\]
\[x_{1,2} = \frac{8 \pm 4}{24}\]
\[x = \frac{1}{6};\ \ \ x = 0,5\]
\[Ответ:x \in \left( \frac{1}{6};0,5 \right).\]
\[4)\ \frac{x - 1}{4} - \frac{2x - 3}{2} < \frac{x^{2} + 3x}{8}| \cdot 8\]
\[2 \cdot (x - 1) - 4 \cdot (2x - 3) -\]
\[- \left( x^{2} + 3x \right) < 0\]
\[2x - 2 - 8x + 12 - x^{2} -\]
\[- 3x < 0\]
\[- x^{2} - 9x + 10 < 0\]
\[x_{1} + x_{2} = - 9,\ \ x_{1} = - 10\]
\[x_{1}x_{2} = - 10,\ \ x_{2} = 1\]
\[Ответ:x \in ( - \infty;\ - 10) \cup (1;\ + \infty).\]
\[\boxed{\text{409.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[График\ y = x^{2}\ представим\ в\ \]
\[виде\ y = (x - a)^{2} + b;\]
\[где\ a,\ b - смещение\]
\[вершины\ параболы\ \]
\[(она\ же\ точка\ вершины\ параболы).\]
\[\textbf{а)}\ y = x^{2} + 3\]
\[\textbf{б)}\ y = - 2x^{2} - 1\ \]