\[\boxed{\text{400\ (400).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Решим\ неравенства\ с\ \]
\[помощью\ графика\ функции\ \]
\[y = x^{2} + 4x - 5.\]
\[1)\ x^{2} + 4x - 5 < 0\]
\[Ответ:x \in ( - 5;1).\]
\[2)\ x^{2} + 4x - 5 \leq 0\]
\[Ответ:x \in \lbrack - 5;1\rbrack.\]
\[3)\ x^{2} + 4x - 5 > 0\]
\[Ответ:x \in ( - \infty; - 5) \cup (1;\ + \infty).\]
\[4)\ x^{2} + 4x - 5 \geq 0\]
\[Ответ:x \in ( - \infty; - 5\rbrack \cup \lbrack 1;\ + \infty).\]
\[\boxed{\text{400.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[y = x^{2}\]
\[1)\ a = 0;b = 6:\]
\[y = x^{2} + 6.\]
\[2)\ a = - 9;b = 0:\]
\[y = (x - 9)^{2}.\]
\[3)\ a = 0;b = - 12:\]
\[y = x^{2} - 12.\]
\[4)\ a = 7;b = 0:\]
\[y = (x + 7)^{2}.\]
\[5)\ a = - 2;b = - 3:\]
\[y = (x - 2)^{2} - 3.\]
\[6)\ a = 1;b = 1:\]
\[y = (x + 1)^{2} + 1.\]