\[\boxed{\text{393\ (393).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ x^{2} - 5x - 10 = 0\]
\[x_{1} + x_{2} = \frac{5}{1} = 5\]
\[x_{1} \cdot x_{2} = - \frac{10}{1} = - 10\]
\[2)\ 2x^{2} + 6x - 7 = 0\]
\[x_{1} + x_{2} = - \frac{6}{2} = - 3\]
\[x_{1} \cdot x_{2} = - \frac{7}{2} = - 3,5\]
\[3) - \frac{1}{3}x^{2} + 8x - 1 = 0\]
\[x_{1} + x_{2} = 8\ :\frac{1}{3} = 8 \cdot 3 = 24\]
\[x_{1} \cdot x_{2} = 1\ :\frac{1}{3} = 3\]
\[\boxed{\text{393.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = ax^{2};\ \ a > 0\]
\[Пусть\ x_{1}\ и\ x_{2} - любые\ \]
\[x \in ( - \infty;0\rbrack,\ такие\ что\ x_{1} < x_{2}\text{.\ }\]
\[Тогда - x_{1} > - x_{2};\ x_{1}^{2} > x_{2}^{2};\ \ \]
\[ax_{1}^{2} > ax_{2}^{2};\ \]
\[\ получаем\ x_{1} < x_{2};\ \ y_{1} > y_{2}:\]
\[функция\ убывает\ на\ \]
\[промежутке\ ( - \infty;0\rbrack.\]
\[2)\ y = ax^{2};\ \ a > 0\]
\[Пусть\ x_{1}\ и\ x_{2} - любые\ \]
\[x \in \lbrack 0;\ + \infty),\ такие\ что\ x_{1} < x_{2}\text{.\ }\]
\[Тогда\ x_{1}^{2} < x_{2}^{2},\ \]
\[ax_{1}^{2} < ax_{2}^{2},\ получаем\ x_{1} < x_{2};\ \]
\[\ y_{1} < y_{2},\ \ \]
\[функция\ возрастает\ на\ \lbrack 0; + \infty)\text{.\ }\]