\[\boxed{\text{354\ (354).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = x^{2} + 4x + 1\]
\[x_{0} = - \frac{4}{2} = - 2;\]
\[y_{0} = 4 - 8 + 1 = - 3.\]
\[Oy:\ \ x = 0,\ \ y = 1.\]
\[y(1) = 1 + 4 + 1 = 6.\]
\[y = \frac{6}{x}\]
\[x\] | \[1\] | \[2\] | \[3\] | \[6\] | \[- 1\] | \[- 2\] | \[- 3\] | \[- 6\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[6\] | \[3\] | \[2\] | \[1\] | \[- 6\] | \[- 3\] | \[- 2\] | \[- 1\] |
\[Ответ:3\ корня.\]
\[\boxed{\text{354.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ нули\ функции:\]
\[x = - 1,\ x = 3.\]
\[2)\ y < 0,\ при\ x \in ( - \infty; - 1) \cup\]
\[\cup (3; + \infty).\]
\[3)\ убывает\ на\ промежутке:\]
\[(1;\ + \infty).\]
\(4)\ E(y) = ( - \infty;4\rbrack\text{.\ }\)