\[\boxed{\text{346\ (346).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = x^{2} + 2x - 8\]
\[x_{0} = \frac{- 2}{2} = - 1;\]
\[y_{0} = 1 - 2 - 8 = - 9.\]
\[\text{Ox}:\ \ \]
\[x^{2} + 2x - 8 = 0\]
\[x_{1} + x_{2} = - 2,\ \ x_{1} = - 4,\ \ \]
\[( - 4;0)\]
\[x_{1}x_{2} = - 8,\ \ x_{2} = 2,\ \ \]
\[(2;0).\]
\[Oy:\ \ \]
\[y = - 8;\ \ x = 0,\ \ (0; - 8)\]
\[y( - 3) = 9 - 6 - 8 = - 5.\]
\[2)\ y = x^{2} - 2x\]
\[x_{0} = \frac{2}{2} = 1;\]
\[y_{0} = 1 - 2 = - 1.\]
\[Ox:\]
\[x^{2} - 2x = 0\]
\[x(x - 2) = 0,\ \ \]
\[x = 0,\ \ x = 2,\ \ \]
\[(0;0),\ \ (2;0).\]
\[Oy:\ \ \]
\[y = 0;\ (0;0).\]
\[y( - 1) = 1 + 2 = 3.\]
\[3)\ y = - x^{2} + 4x - 5\]
\[x_{0} = \frac{- 4}{- 2} = 2;\ \]
\[y_{0} = - 4 + 8 - 5 = - 1.\]
\[Ox:\ \ \ \]
\[- x^{2} + 4x - 5 = 0\]
\[D = 16 - 20 < 0 - \ точек\ нет.\]
\[Oy:\ \ \ \]
\[y = - 5;\ \ \ (0;\ - 5).\]
\[y(1) = - 1 + 4 - 5 = - 2.\]
\[4)\ y = 2x^{2} - 2x - 4\]
\[x_{0} = \frac{2}{4} = 0,5\]
\[y_{0} = 0,5 - 1 - 4 = - 4,5\]
\[\text{Ox}:\ \ 2x^{2} - 2x - 4 = 0\ \ |\ :2\]
\[x^{2} - x - 2 = 0\]
\[x_{1} + x_{2} = 1,\ \ x_{1}x_{2} = - 2,\ \ \]
\[x_{1} = 2,\ \ x_{2} = - 1.\]
\[(2;0),\ \ ( - 1;0).\]
\[\text{Oy}:\ \ \]
\[\ y = - 4,\ \ (0; - 4).\]
\[\boxed{\text{346.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left( 10^{3} \right)^{2} \cdot 10^{- 8} = 10^{6} \cdot 10^{- 8} =\]
\[= 10^{- 2} = 0,01\]
\[2)\frac{25^{- 3} \cdot 5^{3}}{5^{- 5}} = \frac{\left( 5^{2} \right)^{- 3} \cdot 5^{3}}{5^{- 5}} =\]
\[= \frac{5^{- 6} \cdot 5^{3}}{5^{- 5}} = \frac{5^{- 3}}{5^{- 5}} = 5^{2} = 25\]
\[3)\frac{81^{- 2} \cdot 3^{5}}{9^{- 2}} = \frac{\left( 3^{4} \right)^{- 2} \cdot 3^{5}}{\left( 3^{2} \right)^{- 2}} =\]
\[= \frac{3^{- 8} \cdot 3^{5}}{3^{- 4}} = \frac{3^{- 3}}{3^{- 4}} = 3\]
\[4)\frac{{0,125}^{3} \cdot 32^{2}}{{0,5}^{- 2}} = \frac{\left( 2^{- 3} \right)^{3} \cdot \left( 2^{5} \right)^{2}}{\left( 2^{- 1} \right)^{- 2}} =\]
\[= \frac{2^{- 9} \cdot 2^{10}}{2^{2}} = \frac{2}{2^{2}} = \frac{1}{2} = 0,5\ \]