\[\boxed{\text{330\ (330).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{3}{x} = \sqrt{x} + 2;\ x \neq 0;\ \ x \geq 0\]
\[y = \frac{3}{x}\]
\[x\] | \[1\] | \[3\] | \[9\] | \[0,5\] | \[- 1\] | \[- 3\] | \[- 9\] | \[- 0,5\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[3\] | \[1\] | \[0,5\] | \[6\] | \[- 3\] | \[- 1\] | \[- 0,5\] | \[- 6\] |
\[y = \sqrt{x} + 2\]
\[1)\ y = \sqrt{x}\]
\[x\] | \[1\] | \[4\] | \[9\] |
---|---|---|---|
\[y\] | \[1\] | \[2\] | \[3\] |
\[2)\ y = \sqrt{x} + 2\]
\[Ответ:x = 1.\]
\[\boxed{\text{330.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = \frac{x + 3}{x - 4}\]
\[x - 4 \neq 0\]
\[x \neq 4\]
\[D(f) = ( - \infty;4) \cup (4;\ + \infty).\]
\[2)\ f(x) = \frac{9}{x^{2} + 16}\]
\[D(f) = ( - \infty; + \infty).\]
\[3)\ f(x) = \frac{5x + 1}{x^{2} - 6x + 8}\]
\[x^{2} - 6x + 8 \neq 0\]
\[x_{1} + x_{2} = 6,\ \ x_{1} = 2\]
\[x_{1}x_{2} = 8,\ \ x_{2} = 4\]
\[D(f) =\]
\[= ( - \infty;2) \cup (2;4) \cup (4;\ + \infty).\]
\[4)\ f(x) = \sqrt{x - 1} + \sqrt{x - 3}\]
\[x - 1 \geq 0\ \ \ и\ \ \ x - 3 \geq 0\]
\[\ \ \ \ \ \ \ \ x \geq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \geq 3\]
\[D(f) = \lbrack 3; + \infty).\]
\[5)\ f(x) = \sqrt{x - 5} + \sqrt{5 - x}\]
\[x - 5 \geq 0\ \ \ и\ \ \ 5 - x \geq 0\]
\[\ \ \ \ \ \ \ \ x \geq 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \leq 5\]
\[D(f) = \left\{ 5 \right\}\]
\[6)\ f(x) = \sqrt{x^{2} + 1}\]
\[D(f) = ( - \infty; + \infty)\text{.\ }\]