\[\boxed{\text{296\ (296).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = 3x^{2},\ расстяжение\ \]
\[графика\ y = x^{2}\ в\ 3\ раза.\]
\[2)\ y = - \frac{1}{4}x^{2},\ сжатие\ вдоль\ оси\ \]
\[x\ в\ 4\ раза\ и\ симметрия\ \]
\[относительно\]
\[оси\ x\ графика\ y = x^{2}.\]
\(\ \)
\[\boxed{\text{296.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \frac{9x^{2} - 1}{3x^{2} - 4x + 1} =\]
\[= \frac{(3x - 1)(3x + 1)}{(3x - 1)(x - 1)} = \frac{3x + 1}{x - 1}\]
\[3x^{2} - 4x + 1 =\]
\[= 3\left( x - \frac{1}{3} \right)(x - 1) =\]
\[= (3x - 1)(x - 1)\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = \frac{2 + 1}{3} = 1;\]
\[x_{2} = \frac{2 - 1}{3} = \frac{1}{3}.\]
\[2)\ \frac{2x^{2} - 5x + 3}{4x^{2} - 12x + 9} =\]
\[= \frac{(2x - 3)(x - 1)}{(2x - 3)(2x - 3)} = \frac{x - 1}{2x - 3}\]
\[2x^{2} - 5x + 3 =\]
\[= 2\left( x - \frac{3}{2} \right)(x - 1) =\]
\[= (2x - 3)(x - 1)\]
\[D = 25 - 24 = 1\]
\[x_{1} = \frac{5 + 1}{4} = \frac{6}{4} = \frac{3}{2};\]
\[x_{2} = \frac{5 - 1}{4} = 1.\]