\[\boxed{\text{280\ (280).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = x^{2},\]
\[D(f) = \lbrack a;2\rbrack;\ \text{\ \ }a < 2\]
\(\ \)
\[Если\ a < - 2:\ \]
\[f_{наиб} = f(a) = a^{2};\ \]
\[\ f_{наим} = f(0) = 0.\]
\[Если\ a = - 2:\ \]
\[f_{наиб} = f( - 2) = 4;\ \]
\[\ f_{наим} = f(0) = 0.\]
\[Если - 2 \leq a < 0:\ \]
\[f_{наиб} = f( - 2) = 4;\]
\[\text{\ \ }f_{наим} = f(0) = 0.\]
\[Если\ 0 < a \leq 2:\ \]
\[f_{наиб} = f(2) = 4;\ \ \]
\[f_{наим} = f(a) = a^{2}.\ \]
\[\boxed{\text{280.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 4x + a = 2\]
\[4x = 2 - a\]
\[x = \frac{2 - a}{4}\]
\[\frac{2 - a}{4} > 0\ \ \ | \cdot 4\]
\[2 - a > 0\]
\[a < 2\]
\[Ответ:при\ a \in ( - \infty;2).\]
\[2)\ (a + 6) \cdot x = 3\]
\[ax + 6x = 3\]
\[x = \frac{3}{a + 6},\ \ a \neq - 6\]
\[\frac{3}{a + 6} < 0\]
\[a + 6 < 0\]
\[a < - 6\]
\[Ответ:при\ a \in ( - \infty;\ - 6).\]
\[3)\ (a - 1) \cdot x = a^{2} - 1\ \]
\[x = \frac{a^{2} - 1}{a - 1}\]
\[x = \frac{(a - 1)(a + 1)}{(a - 1)}\]
\[x = a + 1,\ \ a \neq 1\]
\[a + 1 > 0\]
\[a > - 1\]
\[Ответ:при\ a \in ( - 1;\ + \infty);\ \ \]
\[кроме\ 1.\]