\[\boxed{\text{250\ (250).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left( 10^{3} \right)^{2} \cdot 10^{- 8} = 10^{6} \cdot 10^{- 8} =\]
\[= 10^{- 2} = 0,01\]
\[2)\frac{25^{- 3} \cdot 5^{3}}{5^{- 5}} = \frac{\left( 5^{2} \right)^{- 3} \cdot 5^{3}}{5^{- 5}} =\]
\[= \frac{5^{- 6} \cdot 5^{3}}{5^{- 5}} = \frac{5^{- 3}}{5^{- 5}} = 5^{2} = 25\]
\[3)\frac{81^{- 2} \cdot 3^{5}}{9^{- 2}} = \frac{\left( 3^{4} \right)^{- 2} \cdot 3^{5}}{\left( 3^{2} \right)^{- 2}} =\]
\[= \frac{3^{- 8} \cdot 3^{5}}{3^{- 4}} = \frac{3^{- 3}}{3^{- 4}} = 3\]
\[4)\frac{{0,125}^{3} \cdot 32^{2}}{{0,5}^{- 2}} = \frac{\left( 2^{- 3} \right)^{3} \cdot \left( 2^{5} \right)^{2}}{\left( 2^{- 1} \right)^{- 2}} =\]
\[= \frac{2^{- 9} \cdot 2^{10}}{2^{2}} = \frac{2}{2^{2}} = \frac{1}{2} = 0,5\ \]