\[\boxed{\text{248\ (248).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = \frac{x^{2} + 4x + 4}{x + 2}\]
\[x + 2 \neq 0\]
\[x \neq - 2.\]
\[D(f) = ( - \infty; - 2) \cup ( - 2; + \infty).\]
\[y = \frac{x^{2} + 4x + 4}{x + 2}\]
\[y = \frac{(x + 2)^{2}}{x + 2}\]
\[y = x + 2\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[2\] | \[3\] |
\[2)\ f(x) = \frac{x^{3}}{x};\ \ x \neq 0\]
\[D(f) = ( - \infty;0) \cup (0; + \infty).\]
\[y = \frac{x^{3}}{x}\]
\[y = x^{2}\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[1\] | \[4\] | \[1\] | \[4\] |
\(\ \)
\[\boxed{\mathbf{248.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1) - 3x \geq 12\]
\[x \leq - 4.\]
\[2)\ \frac{1}{7}x < 4\]
\[x < 28.\]
\[3)\ \frac{5}{6}x > 30\]
\[x > 30 \cdot \frac{6}{5}\]
\[x > 25.\]
\[4) - 0,9x \geq 0\]
\[x \leq 0.\]
\[5)\ 9x - 2 > 25\]
\[9x > 27\]
\[x > 3.\]
\[6)\ 5 - x \leq 8\]
\[- x \leq 3\]
\[x \geq - 3.\]
\[7)\ 4 - 7x \geq 5\]
\[- 7x \geq 1\]
\[x \leq - \frac{1}{7}.\]
\[8)\ 42 - 4x < 2x\]
\[- 6x < - 42\]
\[x > 7.\]
\[9)\ \frac{x + 3}{8} > - 3\]
\[x + 3 > - 24\]
\[x > - 27.\]