\[\boxed{\text{218\ (218).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[3x^{2} - (2a + 5)x + 2 +\]
\[+ a - a^{2} = 0\ \ \]
\[\left\{ \begin{matrix} x_{1} < - 2 \\ x_{2} > 3\ \ \ \\ \end{matrix} \right.\ \text{\ \ }или\ \ \left\{ \begin{matrix} x_{2} < - 2 \\ x_{1} > 3\ \ \ \\ \end{matrix} \right.\ \]
\[D = (2a + 5)^{2} -\]
\[- 12 \cdot \left( 2 + a - a^{2} \right) =\]
\[= 4a^{2} + 20a + 25 - 24 -\]
\[- 12a + 12a^{2} =\]
\[= 16a^{2} + 8a + 1 = (4a + 1)^{2}.\]
\[x_{1} = \frac{2a + 5 + 4a + 1}{6} =\]
\[= \frac{6a + 6}{6} = a + 1\]
\[x_{2} = \frac{2a + 5 - 4a - 1}{6} =\]
\[= \frac{- 2a + 4}{6} = \frac{- a + 2}{3}\]
\[1)\ \left\{ \begin{matrix} a + 1 < - 2 \\ \frac{- a + 2}{3} > 3\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} a < - 3\ \ \ \ \ \ \ \ \\ - a + 2 > 9 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} a < - 3 \\ - a > 7 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} a < - 3 \\ a < - 7 \\ \end{matrix} \right.\ \]
\[\ a \in ( - \infty;\ - 7).\]
\[2)\ \left\{ \begin{matrix} a + 1 > 3\ \ \ \ \ \ \ \\ \frac{- a + 2}{3} < - 2 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} a > 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - a + 2 < - 6 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} a > 2\ \ \ \ \ \ \ \ \\ - a < - 8 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} a > 2 \\ a > 8 \\ \end{matrix} \right.\ \]
\(\text{\ \ \ \ \ \ \ \ \ \ }\)
\[a \in (8;\ + \infty).\]
\[Ответ:a \in ( - \infty;\ - 7) \cup (8;\ + \infty)\text{.\ }\]
\[\boxed{\text{218.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Изначальная\ площадь:\]
\[a \cdot b = 180.\]
\[После\ изменений:\]
\[(a - 3)(b - 2) = 120.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} a \cdot b = 180\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (a - 3)(b - 2) = 120 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} a = \frac{180}{b}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \left( \frac{180}{b} - 3 \right)(b - 2) = 120 \\ \end{matrix} \right.\ \]
\[\frac{180 - 3b}{b} \cdot (b - 2) = 120\ \ \ | \cdot b\]
\[(180 - 3b)(b - 2) = 120b\]
\[180b - 3b^{2} - 360 + 6b - 120b = 0\]
\[- 3b^{2} + 66b - 360 = 0\ \ \ |\ :( - 3)\]
\[b^{2} - 22b + 120 = 0\]
\[D_{1} = 121 - 120 = 1\]
\[b_{1} = 11 + 1 = 12\ см;\]
\[b_{2} = 11 - 1 = 10\ см.\]
\[a_{1} = \frac{180}{12} = 15\ см;\]
\[a_{2} = \frac{180}{10} = 18\ см.\]
\[Ответ:12\ см\ и\ 15\ см;или\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ 10\ см\ и\ 18\ см.\]