\[\boxed{\text{216\ (216).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{2} - 2ax + a^{2} - 4 = 0;\ \ \text{\ \ }\]
\[x_{1}\ и\ x_{2}\ меньше\ 5\]
\[D = 4a^{2} - 4a^{2} + 16 = 16\]
\[x_{1} = \frac{2a + 4}{2} = a + 2\]
\[x_{2} = \frac{2a - 4}{2} = a - 2\]
\[\left\{ \begin{matrix} a + 2 < 5 \\ a - 2 < 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} a < 3 \\ a < 7 \\ \end{matrix} \right.\ \]
\(\ \)
\[Ответ:a \in ( - \infty;3)\text{.\ }\]
\[\boxed{\text{216.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[S = \frac{1}{2}a \cdot b = 30\]
\[a \cdot b = 60;\]
\[a^{2} + b^{2} = 169.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} a \cdot b = 60\ \ \ \ \ \ \ \ \ \\ a^{2} + b^{2} = 169 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} a = \frac{60}{b}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \left( \frac{60}{b} \right)^{2} + b^{2} = 169 \\ \end{matrix} \right.\ \]
\[\frac{3600}{b^{2}} + b^{2} - 169 = 0\ \ \ \ | \cdot b^{2}\]
\[3600 + b^{4} - 169b^{2} = 0\]
\[b^{4} - 169b^{4} + 3600 = 0\]
\[b^{2} = x:\]
\[x^{2} - 169x + 3600 = 0\]
\[D = 28\ 561 - 14\ 400 =\]
\[= 14\ 161 = 119^{2}\]
\[x_{1} = \frac{169 + 119}{2} = \frac{288}{2} = 144;\]
\[x_{2} = \frac{169 - 119}{2} = \frac{50}{2} = 25.\]
\[b^{2} = 144\]
\[b_{1} = 12.\]
\[b^{2} = 25\]
\[b_{2} = 5.\]
\[a_{1} = \frac{60}{b} = \frac{60}{12} = 5;\]
\[a_{2} = \frac{60}{b} = \frac{60}{5} = 12.\]
\[Ответ:5\ см\ и\ 12\ см.\]