\[\boxed{\text{182\ (182).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
\[\mathbf{Числовые\ промежутки.}\]
Решение.
\[1)\left\{ \begin{matrix} x \leq 2\ \ \ \\ x \leq - 1 \\ \end{matrix} \right.\ \]
\[Ответ:x \in ( - \infty;\ - 1\rbrack.\]
\[2)\left\{ \begin{matrix} x \leq 2\ \ \ \\ x > - 1 \\ \end{matrix} \right.\ \]
\[Ответ:x \in ( - 1;2\rbrack.\]
\[3)\ \left\{ \begin{matrix} x < 2\ \ \ \\ x \geq - 1 \\ \end{matrix} \right.\ \]
\[Ответ:x \in \lbrack - 1;2).\]
\[4)\ \left\{ \begin{matrix} x \leq 2\ \ \ \\ x < - 1 \\ \end{matrix} \right.\ \]
\[Ответ:x \in ( - \infty;\ - 1).\]
\[5)\ \left\{ \begin{matrix} x > 2\ \ \ \\ x \geq - 1 \\ \end{matrix} \right.\ \]
\[Ответ:x \in (2; + \infty).\]
\[6)\ \left\{ \begin{matrix} x > 2\ \ \ \\ x \leq - 1 \\ \end{matrix} \right.\ \]
\[Ответ:\ \varnothing.\]
\[7)\ \left\{ \begin{matrix} x \geq 2 \\ x \leq 2 \\ \end{matrix} \right.\ \]
\[Ответ:x \in \left\{ 2 \right\}.\]
\[8)\ \left\{ \begin{matrix} x \geq 2 \\ x < 2 \\ \end{matrix} \right.\ \]
\[Ответ:\ \varnothing.\]
\[\boxed{\text{182.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left\{ \begin{matrix} 3y - 2xy = 2 \\ x + 2xy = 5\ \ \\ \end{matrix} \right.\ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[\ \left\{ \begin{matrix} 3y - 2xy + x + 2xy = 7 \\ x + 2xy = 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 3y + x = 7 \\ x + 2xy = 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = 7 - 3y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 7 - 3y + 2y \cdot (7 - 3y) = 5 \\ \end{matrix} \right.\ \]
\[7 - 3y + 14y - 6y^{2} - 5 = 0\]
\[6y^{2} - 11y - 2 = 0\]
\[D = 121 + 48 = 169\]
\[y_{1,2} = \frac{11 \pm 13}{12}\]
\[y_{1} = 2\]
\[y_{2} = - \frac{1}{6}\]
\[\left\{ \begin{matrix} y = 2 \\ x = 1 \\ \end{matrix} \right.\ \ \ \ \ или\ \ \ \ \left\{ \begin{matrix} y = - \frac{1}{6} \\ x = 7,5 \\ \end{matrix} \right.\ \]
\[Ответ:(1;2);\left( 7,5;\ - \frac{1}{6} \right).\]
\[2)\ \left\{ \begin{matrix} xy + y = 30 \\ xy + x = 28 \\ \end{matrix} - \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} xy + y - xy - x = 2 \\ xy + x = 28\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} y - x = 2 \\ xy + x = 28 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = 2 + x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x \cdot (2 + x) + x = 28 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} y = 2 + x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x + x^{2} + x - 28 = 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} y = 2 + x \\ x^{2} + 3x - 28 = 0 \\ \end{matrix} \right.\ \]
\[x_{1} + x_{2} = - 3,\ \ x_{1} = - 7\]
\[x_{1}x_{2} = - 28,\ \ x_{2} = 4\]
\[\left\{ \begin{matrix} x = - 7 \\ y = - 5 \\ \end{matrix} \right.\ \ \ \ \ или\ \ \ \left\{ \begin{matrix} x = 4 \\ y = 6 \\ \end{matrix} \right.\ \]
\[Ответ:( - 7;\ - 5);\ (4;6).\]