\[\boxed{\text{148\ (148).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[По\ теореме\ неравенства\ \]
\[треугольников\ \]
\[(одна\ сторона\ всегда\ меньше\]
\[суммы\ длин\ двух\ \]
\[других\ сторон)\ получаем:\]
\[a < 8 + 14\]
\[a < 22\]
\[a = 21\ (см) - наименьшее\ \]
\[натуральное\ значение.\]
\[Ответ:21\ см.\]
\[\boxed{\mathbf{148.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left| x^{2} + 10x - 4 \right| = 20\]
\[x^{2} + 10x - 4 = 20\]
\[x^{2} + 10x - 24 = 0\]
\[D_{1} = 25 + 24 = 49\]
\[x_{1} = - 5 + 7 = 2;\]
\[x_{2} = - 5 - 7 = - 12.\]
\[x^{2} + 10x - 4 = - 20\]
\[x^{2} + 10x + 16 = 0\]
\[D_{1} = 25 - 16 = 9\]
\[x_{1} = - 5 + 3 = - 2;\]
\[x_{2} = - 5 - 3 = - 8.\]
\[Ответ:\ \pm 2;\ - 12;\ - 8.\]
\[2)\ x|x| + 12x - 45 = 0\]
\[x^{2} + 12x - 45 = 0\]
\[D_{1} = 36 + 45 = 81\]
\[x_{1} = - 6 + 9 = 3;\]
\[x_{2} = - 6 - 9 = - 15.\]
\[- x^{2} + 12x - 45 = 0\]
\[x^{2} - 12x + 45 = 0\]
\[D_{1} = 36 - 45 < 0\]
\[нет\ корней.\]
\[Ответ:\ - 15;\ \ 3.\]
\[3)\ \frac{x^{3}}{|x|} - 14x - 15 = 0\]
\[x^{2} - 14x - 15 = 0\]
\[D_{1} = 49 + 15 = 64\]
\[x_{1} = 7 + 8 = 15;\]
\[x_{2} = 7 - 8 = - 1.\]
\[- x^{2} - 14x - 15 = 0\]
\[x^{2} + 14x + 15 = 0\]
\[D_{1} = 49 - 15 = 34\]
\[x = - 7 \pm \sqrt{34}.\]
\[Ответ:\ - 1;15;\ - 7 \pm \sqrt{34}.\]
\[4)\ x^{2} + 4\sqrt{x^{2}} - 12 = 0\]
\[x^{2} + 4|x| - 12 = 0\]
\[x^{2} + 4x - 12 = 0\]
\[D_{1} = 4 + 12 = 16\]
\[x_{1} = - 2 + 4 = 2;\]
\[x_{2} = - 2 - 4 = - 6.\]
\[x^{2} - 4x - 12 = 0\]
\[D_{1} = 4 + 12 = 16\]
\[x_{1} = 2 + 4 = 6;\]
\[x_{2} = 2 - 4 = - 2.\]
\[Ответ:\ \pm 2;\ \pm 6.\]