\[\boxed{\text{132\ (132).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \frac{4x}{3} + \frac{x}{2} < 11\ \ \ \ | \cdot 6\]
\[8x + 3x < 66\]
\[11x < 66\]
\[x < 6\]
\[Ответ:x \in ( - \infty;6).\]
\[2)\frac{2x}{3} - \frac{3x}{4} \geq \frac{1}{6}\ \ \ \ \ \ \ | \cdot 12\]
\[8x - 9x \geq 2\]
\[- x \geq 2\]
\[x \leq - 2\]
\[Ответ:x \in ( - \infty;2\rbrack.\]
\[3)\frac{5x}{7} - x > - 4\ \ \ \ \ \ \ \ \ | \cdot 7\]
\[- 2x > - 28\]
\[x < 14\]
\[Ответ:x \in ( - \infty;14).\]
\[4)\ \frac{x}{8} - \frac{1}{4} \leq x\ \ \ \ \ \ \ \ | \cdot 8\]
\[x - 2 \leq 8x\]
\[- 7x \leq 2\]
\[x \geq - \frac{2}{7}\]
\[Ответ:x \in \left\lbrack - \frac{2}{7};\ + \infty \right).\]