\[\boxed{\text{130\ (130).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[9c - 2 \leq 4c + 4\]
\[9c - 4c \leq 6\]
\[5c \leq 6\]
\[c \leq \frac{6}{5}\]
\[c \leq 1,2\]
\[Ответ:при\ c \in ( - \infty;1,2\rbrack.\]
\[\boxed{\mathbf{130.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1) - 4x - 6 = 7 - 6x\]
\[2x = 13\]
\[x = 6,5.\]
\[2)\ x + 1 = - 4(5 - 4x)\]
\[x + 1 = - 20 + 16x\]
\[- 15x = - 21\]
\[x = \frac{21}{15} = \frac{7}{5} = \frac{14}{10}\]
\[x = 1,4.\]
\[3)\ 3(0,5x - 4) + 8,5x = 18\]
\[1,5x - 12 + 8,5x = 18\]
\[10x = 30\]
\[x = 3.\]
\[4)\ \frac{x + 2}{3} = \frac{3x - 2}{5}\]
\[5(x + 2) = 3(3x - 2)\]
\[5x + 10 = 9x - 6\]
\[- 4x = - 16\]
\[x = 4.\]
\[5)\ \frac{x - 4}{3} + \frac{x}{2} = 5\ \ \ | \cdot 6\]
\[2(x - 4) + 3x = 30\]
\[2x - 8 + 3x = 30\]
\[5x = 38\]
\[x = \frac{38}{5} = 7\frac{3}{5}\]
\[x = 7,6.\]
\[6)\ (0,2x + 8)(9 - 5x) = 0\]
\[0,2 \cdot ( - 5) \cdot (x + 40)\left( x - \frac{9}{5} \right) = 0\]
\[- (x + 40)(x - 1,8) = 0\]
\[x = - 40;\ \ \ x = 1,8.\]