\[\boxed{\text{123\ (123).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[7 - 2b > 0\]
\[7 > 2b\]
\[b < 3,5\]
\[Ответ:при\ b \in ( - \infty;3,5).\]
\[\boxed{\mathbf{123.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x + 4 = 15\]
\[x = 11.\]
\[3x = 33\]
\[x = 11.\]
\[Равносильны.\]
\[2)\ 7x + 85 = 3x + 16\]
\[4x = - 69\]
\[x = - \frac{69}{4}.\]
\[7x - 16 = 3x - 85\]
\[4x = 69\]
\[x = \frac{69}{4}.\]
\[Неравносильны.\]
\[3)\ x - 9 = 0\]
\[x = 9.\]
\[x(x - 9) = 0\]
\[x = 0;x = 9.\]
\[Неравносильны.\]
\[4)\ \frac{16}{x} = 0\]
\[нет\ корней.\]
\[x^{2} = - 16\]
\[нет\ корней.\]
\[Равносильны.\]
\[5)\ \frac{8x - 9}{5} = \frac{4x - 11}{6}\ \ | \cdot 30\]
\[6(8x - 9) = 5(4x - 11).\]
\[6(8x - 9) = 5(4x - 11).\]
\[Равносильны.\]
\[6)\ \frac{x^{2} - 4}{x - 2} = 0;\ \ \ \ x \neq 2\]
\[x^{2} - 4 = 0\]
\[x^{2} = 4\]
\[x = \pm 2\]
\[x = - 2.\]
\[x^{2} - 4 = 0\]
\[x^{2} = 4\]
\[x = \pm 2.\]
\[Неравносильны.\]