Решебник по алгебре 9 класс Мерзляк Задание 1029

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 1029

\[\boxed{\mathbf{1029\ (1029).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ \frac{a - 1}{a},\ \frac{a - 3}{a},\ \frac{a - 5}{a},\ldots =\]

\[= 1 - \frac{1}{a},\ 1 - \frac{3}{a},\ 1 - \frac{5}{a},\ldots\]

\[d = 1 - \frac{3}{a} - 1 + \frac{1}{a} = - \frac{2}{a}\]

\[S_{n} = \frac{2a_{1} + d(n - 1)}{2} \cdot n =\]

\[= \frac{2 \cdot \left( 1 - \frac{1}{a} \right) - \frac{2}{a} \cdot (n - 1)}{2} \cdot n =\]

\[= \frac{2 - \frac{2}{a} - \frac{2}{a}n + \frac{2}{a}}{2} \cdot n =\]

\[= \frac{2 - \frac{2n}{a}}{2} \cdot n = \left( 1 - \frac{n}{a} \right) \cdot n =\]

\[= \frac{a - n}{a} \cdot n = \frac{(a - n) \cdot n}{a}\]

\[2)\ \frac{a - b}{a + b},\ \frac{3a - b}{a + b},\ \frac{5a - b}{a + b},\ \ldots\]

\[d\mathbf{=}\frac{3a - b}{a + b} - \frac{a - b}{a + b} =\]

\[= \frac{3a - b - a + b}{a + b} = \frac{2a}{a + b}\]

\[S_{n} = \frac{2a_{1} + d(n - 1)}{2} \cdot n =\]

\[= \frac{2 \cdot \frac{a - b}{a + b} + \frac{2a}{a + b} \cdot (n - 1)}{2} \cdot n =\]

\[= \frac{2 \cdot (a - b) + 2a(n - 1)}{2 \cdot (a + b)} \cdot n =\]

\[= \frac{a - b + a(n - 1)}{a + b} \cdot n =\]

\[= \frac{a - b + an - a}{a + b} \cdot n =\]

\[= \frac{an - b}{a + b} \cdot n = \frac{n(an - b)}{a + b}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам