\[\boxed{\mathbf{1027\ (1027).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Запишем\ b = \frac{a + c}{2},\]
\[\ \ 2b = a + c,\ \ тогда\ \]
\[a^{2} + ab + b^{2} = a^{2} + a \cdot \frac{a + c}{2} +\]
\[+ \left( \frac{a + c}{2} \right)^{2} = a^{2} + \frac{a^{2} + ac}{2} +\]
\[+ \frac{a^{2} + 2ac + c^{2}}{4} =\]
\[= \frac{4a^{2} + 2a^{2} + 2ac + a^{2} + 2ac + c^{2}}{4} =\]
\[= \frac{7a^{2} + 4ac + c^{2}}{4}\]
\[a^{2} + ac + c^{2} =\]
\[= \frac{\left( a^{2} + ab + b^{2} \right) + \left( b^{2} + bc + c^{2} \right)}{2} =\]
\[= \frac{7a^{2} + 4ac + c^{2} + 7c^{2} + 4ac + a^{2}}{8} =\]
\[= \frac{8a^{2} + 8c^{2} + 8ac}{8} =\]
\[= a^{2} + c^{2} + ac.\]
\[Значит,\ a^{2} + ab + b^{2},\ \ \]
\[a^{2} + ac + c^{2},\ \ \]
\[b^{2} + bc + c^{2} - члены\]
\[арифметической\ прогрессии.\]