\[\boxed{\mathbf{Задание}\mathbf{\ 2.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\mathbf{№1.}\]
\[f( - 3) = 18 - 1 = 17\]
\[\mathbf{Ответ:Г.}\]
\[\mathbf{№2.}\]
\[Ответ:В.\]
\[\mathbf{№3.}\]
\[\textbf{а)}\ y = \sqrt{6 + x},\ \ 6 + x \geq 0,\]
\[\ \ x \geq - 6\]
\[\textbf{б)}\ y = \frac{1}{\sqrt{6 - x}},\ \ 6 - x > 0,\]
\[\ \ x < 6\]
\[\textbf{в)}\ y = \frac{1}{\sqrt{6 + x}},\ \ 6 + x > 0,\]
\[\ \ x > - 6\]
\[\textbf{г)}\ y = \sqrt{6 - x},\ \ 6 - x \geq 0,\]
\[\ \ x \leq 6\]
\[\mathbf{№4.}\]
\[Ответ:В.\]
\[\mathbf{№5.}\]
\[\mathbf{Ответ:А.}\]
\[\mathbf{№6.}\]
\[\mathbf{Ответ:Г.}\]
\[\mathbf{№7.}\]
\[\mathbf{Ответ:Г.}\]
\[\mathbf{№8.}\]
\[y = 3 \cdot (x - 4)^{2} - 5\]
\[график\ функции\ x^{2}смещаем\ на\]
\[\ 4\ вправо\ и\ на\ 5\ вниз.\]
\[Ответ:В.\]
\[\mathbf{№9.}\]
\[\mathbf{Ответ:В.}\]
\[\mathbf{№10.}\]
\[y = 2x^{2} - 12x + 3\]
\[x_{0} = \frac{12}{2 \cdot 2} = 3\]
\[\mathbf{Ответ:В.}\]
\[\mathbf{№11.}\]
\[\mathbf{Ответ:В.}\]
\[\mathbf{№12.}\]
\[\mathbf{Ответ:Г.}\]
\[\mathbf{№13.}\]
\[\mathbf{Ответ:Б.}\]
\[\mathbf{№14.}\]
\[y = 2x^{2} + x - 6\]
\[2x^{2} + x - 6 = 0\]
\[D = 1 + 48 = 49\]
\[x_{1,2} = \frac{- 1 \pm 7}{4}\]
\[x_{1} = - 2,\ \ x_{2} = 1,5\]
\[Ответ:Г.\ \]
\[\mathbf{№15.}\]
\[y = x^{2} + bx + c\]
\[9 + 3b + c = 8\]
\[\left\{ \begin{matrix} 3b + c = - 1 \\ - \frac{b}{2} = 3\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} 3b + c = - 1 \\ b = - 6\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} - 18 + c = - 1 \\ b = - 6\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\left\{ \begin{matrix} c = 17 \\ b = - 6 \\ \end{matrix} \right.\ \]
\[\mathbf{Ответ:Б.}\]
\[\mathbf{№16.}\]
\[\mathbf{Ответ:В.}\]
\[\mathbf{№17.}\]
\[y = 3x^{2} - 6x + a,\]
\[\ \ вершина\ \ (x;4).\]
\[y_{0} = - \frac{D}{4 \cdot 3}\]
\[D = 36 - 12a = 12 \cdot (3 - a)\]
\[a - 3 = 4\]
\[a = 7\]
\[Ответ:В.\]
\[\mathbf{№18.}\]
\[m - n = 8,\ \ m = 8 + n\]
\[\mathbf{Ответ:А.}\]