1. Решите систему уравнений x+y=5; xy=6.
2. а) Какие линии являются графиками уравнений x^2-4y=5 и x+y=4? Назовите их.
б) Вычислите координаты точек пересечения графиков уравнений x^2-4y=5 и x+y=4.
3. Дана задача: «Периметр прямоугольника равен 28 см, а его диагональ равна 10 см. Чему равны стороны прямоугольника?»
а) Составьте систему уравнений по условию задачи.
б) Дайте ответ на вопрос задачи, выполнив необходимые вычисления.
4. С помощью схематических графиков выясните, сколько корней имеет уравнение 1/x=|x|.
5. Решите систему уравнений (x-3)(y+1)=0; x^2-xy-12=0.
6. Парабола с вершиной в начале координат, симметричная относительно оси у, проходит через точку (-3; 3). В каких точках эта парабола пересекает прямую y=27?
7. При каких значениях n система уравнений 3x-2y=8; x-y=3; 3x+y=n имеет решение?
\[\boxed{\mathbf{1.}}\]
\[\left\{ \begin{matrix} x + y = 5 \\ xy = 6\ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} y = 5 - x\ \ \ \ \ \ \\ x(5 - x) = 6 \\ \end{matrix}\text{\ \ } \right.\ \]
\[5x - x^{2} = 6\]
\[x^{2} - 5x + 6 = 0\]
\[x_{1} + x_{2} = 5;\ \ \ x_{1} \cdot x_{2} = 6\]
\[x_{1} = 2 \rightarrow y = 3;\]
\[x_{2} = 3 \rightarrow y = 2.\]
\[Ответ:(2;3);(3;2).\]
\[\boxed{\mathbf{2.}}\]
\[\textbf{а)}\ x^{2} - 4y = 5 \rightarrow 4y = x^{2} - 5 \rightarrow\]
\[\rightarrow y = \frac{1}{4}x^{2} - \frac{5}{4} \rightarrow парабола.\]
\[x + y = 4 \rightarrow y = 4 - x \rightarrow прямая.\]
\[\textbf{б)}\frac{1}{4}x^{2} - \frac{5}{4} = 4 - x\ \ \ \ | \cdot 4\]
\[x^{2} - 5 = 16 - 4x\]
\[x^{2} + 4x - 21 = 0\]
\[x_{1} + x_{2} = - 4;\ \ x_{1} \cdot x_{2} = - 21\]
\[x_{1} = - 7 \rightarrow y_{1} = 11;\]
\[x_{2} = 3 \rightarrow y_{2} = 1.\]
\[Ответ:( - 7;11);(3;1).\]
\[\boxed{\mathbf{3.}}\]
\[P = 28\ см;d = 10\ см.\]
\[a + b = 28\ :2 = 14\ см.\]
\[\textbf{а)}\ \left\{ \begin{matrix} a + b = 14\ \ \ \ \ \ \ \\ a^{2} + b^{2} = 100 \\ \end{matrix} \right.\ \]
\[\textbf{б)}\ \left\{ \begin{matrix} a = 14 - b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (14 - b)^{2} + b^{2} = 100 \\ \end{matrix} \right.\ \]
\[196 - 28b + b^{2} + b^{2} - 100 = 0\]
\[2b^{2} - 28b + 96 = 0\ \ \ \ |\ :2\]
\[b^{2} - 14b + 48 = 0\]
\[D_{1} = 49 - 48 = 1\]
\[b_{1} = 7 + 1 = 8 \rightarrow a_{1} = 6;\]
\[b_{2} = 7 - 1 = 6 \rightarrow a_{2} = 8.\]
\[Ответ:стороны\ равны\ 6\ см\ и\ 8\ см.\]
\[\boxed{\mathbf{4.}}\]
\[\frac{1}{x} = |x|\]
\[y = \frac{1}{x};\ \ y = |x|.\]
\[Ответ:уравнение\ имеет\ 1\ корень.\]
\[\boxed{\mathbf{5.}}\]
\[\left\{ \begin{matrix} (x - 3)(y + 1) = 0 \\ x^{2} - xy - 12 = 0\ \ \\ \end{matrix} \right.\ \]
\[x - 3 = 0\]
\[x = 3:\]
\[3^{2} - 3y - 12 = 0\]
\[9 - 3y - 12 = 0\]
\[- 3y = 3\]
\[y = - 1.\]
\[y + 1 = 0\]
\[y = - 1:\]
\[x^{2} + x - 12 = 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 12\]
\[x_{1} = - 4;\ \ \ x_{2} = 3.\]
\[Ответ:(3;\ - 1);( - 4;\ - 1).\]
\[\boxed{\mathbf{6.}}\]
\[Так\ как\ парабола\ проходит\ через\ \]
\[начало\ координат,\ то\ уравнение\ \]
\[имеет\ вид:\]
\[y = ax^{2}.\]
\[Точка\ ( - 3;3):\]
\[3 = a \cdot ( - 3)^{2}\]
\[9a = 3\]
\[a = \frac{1}{3}.\]
\[Уравнение\ параболы:\]
\[y = \frac{1}{3}x^{2}.\]
\[При\ y = 27:\]
\[\frac{1}{3}x^{2} = 27\]
\[x^{2} = 27 \cdot 3 = 81\]
\[x = \pm 9.\]
\[Парабола\ пересекает\ прямую\ y = 27\]
\[в\ точках\ (9;27)\ и\ ( - 9;27).\]
\[\boxed{\mathbf{7.}}\]
\[\left\{ \begin{matrix} 3x - 2y = 8 \\ x - y = 3\ \ \ \ \ \\ 3x + y = n\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} x = 3 + y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3 \cdot (3 + y) - 2y = 8 \\ 3 \cdot (3 + y) + y = n\ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 9 + 3y - 2y = 8 \\ 9 + 3y + y = n\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = - 1\ \ \ \ \ \ \ \ \\ n = 4y + 9 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} y = - 1 \\ n = 5\ \ \\ \end{matrix} \right.\ \ \]
\[Ответ:при\ n = 5.\]