\[\boxed{\mathbf{165.}}\]
\[\textbf{а)}\ C_{4}^{3} = \frac{4!}{3!(4 - 3)!} = \frac{4}{1} = 4.\]
\[\textbf{б)}\ C_{5}^{2} = \frac{5!}{2!(5 - 2)!\ } = \frac{3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3} =\]
\[= 2 \cdot 10 = 10.\]
\[\textbf{в)}\ C_{7}^{5} = \frac{7!}{5!(7 - 5)!} = \frac{6 \cdot 7}{1 \cdot 2} =\]
\[= 3 \cdot 7 = 21.\]
\[\textbf{г)}\ C_{11}^{3} = \frac{11!}{3!8!} = \frac{9 \cdot 10 \cdot 11}{2 \cdot 3} =\]
\[= 3 \cdot 5 \cdot 11 = 15 \cdot 11 = 165.\]
\[\textbf{д)}\ C_{12}^{6} = \frac{12!}{6!6!} =\]
\[= \frac{7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} =\]
\[= 7 \cdot 4 \cdot 3 \cdot 11 = 308 \cdot 3 = 924.\]
\[\textbf{е)}\ C_{12}^{8} = \frac{12!}{8!4!} = \frac{9 \cdot 10 \cdot 11 \cdot 12}{1 \cdot 2 \cdot 3 \cdot 4} =\]
\[= 9 \cdot 5 \cdot 11 = 45 \cdot 11 = 495.\]