\[\boxed{\text{97\ (97).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Есть\ наибольшая\ степень\ \]
\[числа\ 2,\ на\ которую\ делится\ \]
\[четное\ число:2^{k}.\]
\[Тогда\ каждый\ делитель\ числа\ \]
\[можно\ представить\ в\ виде\ 2^{m} \cdot n,\]
\[где\ m \leq k,\ а\ n -\]
\[нечетный\ делитель.\]
\[Если\ n - четный\ делитель,\ \]
\[то\ 2n\ldots 2^{k} \cdot n - четные\ делители.\]
\[Таким\ образом,\ из\ каждого\ \]
\[нечетного\ делителя\ получаются\ \]
\[k\ четных.\]
\[Следовательно,\ всего\ четных\ \]
\[делителей\ в\ \text{k\ }раз\ больше,\ \]
\[чем\ нечетных.\]
\(\boxed{\text{97.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\)
Пояснение.
Решение.
\[1)\ \frac{x^{\backslash 3}}{8} - \frac{y^{\backslash 2}}{12} = \frac{3 \cdot x - 2 \cdot y}{24} =\]
\[= \frac{3x - 2y}{24}\]
\[2)\ \frac{4a^{\backslash 4}}{7} + \frac{a^{\backslash 7}}{4} = \frac{4a \cdot 4 + a \cdot 7}{28} =\]
\[= \frac{16a + 7a}{28} = \frac{23a}{28}\]
\[3)\ \frac{m^{\backslash m}}{n} - \frac{n^{\backslash n}}{m} = \frac{m \cdot m - n \cdot n}{\text{mn}} =\]
\[= \frac{m^{2} - n^{2}}{\text{mn}}\]
\[4)\ \frac{{x^{2}}^{\backslash 4x}}{2y} + \frac{y^{\backslash y}}{8x} = \frac{x^{2} \cdot 4x + y \cdot y}{8xy} =\]
\[= \frac{4x^{3} + y^{2}}{8xy}\]
\[5)\ \frac{7^{\backslash p}}{\text{cd}} + \frac{k^{\backslash d}}{\text{cp}} = \frac{7 \cdot p + k \cdot d}{\text{cdp}} =\]
\[= \frac{7p + kd}{\text{cdp}}\]
\[6)\ \frac{6a^{\backslash 2}}{35c^{5}} - \frac{9b^{\backslash 5c^{3}}}{14c^{2}} =\]
\[= \frac{6a \cdot 2 - 9b \cdot 5c^{3}}{70c^{5}} =\]
\[= \frac{12a - 45bc^{3}}{70c^{5}}\]