\[\boxed{\mathbf{861\ (861).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\left( \frac{a^{5}}{x^{4}} \right)^{2} = \frac{a^{10}}{x^{8}}\]
\[2)\ \left( - \frac{4y}{3m^{2}} \right)^{4} = \frac{256y^{4}}{81m^{8}}\]
\[3)\ \left( - \frac{10x^{2}y^{5}}{3a^{4}b^{3}} \right)^{3} = - \frac{1000x^{6}y^{15}}{27a^{12}b^{9}}\]
\[4)\ \left( - \frac{2a^{4}b^{4}}{25x^{5}} \right)^{2} \cdot \left( - \frac{5x^{2}}{4a^{2}b^{3}} \right)^{3} =\]
\[= - \frac{4a^{8}b^{8} \cdot 125x^{6}}{625x^{10} \cdot 64 \cdot a^{6}b^{9}} =\]
\[= - \frac{a^{2}}{80x^{4}b}\ \]
\[\boxed{\mathbf{8}\mathbf{6}\mathbf{1}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a > 0;b > 0;c < 0;\ d < 0.\]
\[1)\ bc > 0\]
\[2)\ cd > 0\]
\[3)\ \frac{a}{b} > 0\]
\[4)\ \frac{\text{ab}}{c} < 0\]
\[5)\ \frac{\text{ac}}{d} > 0\]
\[6)\ \frac{a}{\text{bc}} < 0\]
\[7)\ \ abcd > 0\]
\[8)\ \frac{b}{\text{acd}} > 0\]