\[\boxed{\mathbf{858\ (858).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{a + b + c}{a + b - c} = \frac{a - b + c}{a - b - c}\]
\[(a + b + c)(a - b - c) =\]
\[= (a + b - c)(a - b + c)\]
\[- 2c(a + b) + 2c(a - b) = 0\]
\[c( - a - b + a - b) = 0\]
\[- 2cb = 0\]
\[cb = 0\]
\[c = 0\ \ или\ \ \ \ b = 0.\]
\[\boxed{\mathbf{8}\mathbf{5}\mathbf{8}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = \frac{k}{x},\ \ A\ \left( - \sqrt{12};\sqrt{3} \right)\]
\[k = xy\]
\[k = - \sqrt{12} \cdot \sqrt{3} = - \sqrt{36} = - 6\]
\[y = - \frac{6}{x}\]
\[x\] | \[1\] | \[- 1\] | \[2\] | \[- 2\] | \[6\] | \[- 6\] |
---|---|---|---|---|---|---|
\[y\] | \[- 6\] | \[6\] | \[- 3\] | \[3\] | \[- 1\] | \[1\] |