\[\boxed{\mathbf{797\ (797).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{x^{2} - ax + 5}{x - 1} = 0;\ \ \ x \neq 1\]
\[x^{2} - ax + 5 = 0\]
\[Уравнение\ имеет\ один\ корень\ \]
\[при\ D = 0:\]
\[D = a^{2} - 4 \cdot 5 = a^{2} - 20\]
\[a^{2} - 20 = 0\]
\[a^{2} = 20\]
\[a = \pm \sqrt{20} = \pm 2\sqrt{5}\]
\[Ответ:a = \ \pm 2\sqrt{5}.\]
\[\boxed{\mathbf{7}\mathbf{9}\mathbf{7}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 2x^{2} - 7x + a;\ \ \ \ \ x - 4\]
\[x_{1} = 4\]
\[x_{1} + x_{2} = 3,5\]
\[x_{2} = 3,5 - 4 = - 0,5\]
\[x_{1} \cdot x_{2} = \frac{a}{2}\]
\[- 4 \cdot \frac{1}{2} = \frac{a}{2}\]
\[- 2 = \frac{a}{2}\]
\[a = - 4\]
\[Ответ:\ a = - 4.\]
\[2)\ 4x² - ax + 6,\]
\[2x + 1 = 2 \cdot (x + 0,5)\]
\[x_{1} = - 0,5\]
\[x_{1}x_{2} = 1,5\]
\[x_{2} = \frac{1,5}{- 0,5} = - 3\]
\[x_{1} + x_{2} = \frac{a}{4}\]
\[- 0,5 - 3 = \frac{a}{4}\]
\[- 3,5 = \frac{a}{4}\]
\[a = - 14\]
\[Ответ:\ a = - 14.\]