Решебник по алгебре 8 класс Мерзляк ФГОС Задание 791

Авторы:
Год:2024
Тип:учебник
Серия:Алгоритм успеха

Задание 791

Выбери издание
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021

\[\boxed{\mathbf{791\ (791).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ \frac{2x - 10}{x³ + 1} + \frac{4}{x + 1} = \frac{5x - 1}{x² - x + 1}\]

\[- x^{2} - 6x - 5 = 0\]

\[x^{2} + 6x + 5 = 0\]

\[x_{1} + x_{2} = - 6,\ \ x_{1}x_{2} = 5,\ \ \]

\[x_{1} = - 5,\ \ \]

\[x_{2} = - 1\ (не\ подходит)\]

\[Ответ:\ x = - 5.\]

\[2)\ \frac{6}{x^{2} - 4x + 3} + \frac{5 - 2x}{x - 1} = \frac{3}{x - 3}\]

\[x^{2} - 4x + 3 = (x - 3)(x - 1)\]

\[x_{1} + x_{2} = 4,\ \ x_{1}x_{2} = 3,\ \ \]

\[\text{\ \ }x_{1} = 3,\ \ x_{2} = 1\]

\[- 2x^{2} + 8x - 6 = 0\ \ \ \ \ |\ :( - 2)\]

\[x^{2} - 4x + 3 \neq 0\]

\[Ответ:корней\ нет.\]

\[3)\ \frac{4x - 6}{x + 2} - \frac{x}{x + 1} = \frac{14}{x^{2} + 3x + 2}\]

\[x^{2} + 3x + 2 = (x + 2)(x + 1)\]

\[x_{1} + x_{2} = - 3,\ \ x_{1}x_{2} = 2,\]

\[\text{\ \ }x_{1} = - 2,\ \ x_{2} = - 1\]

\[3x^{2} - 4x - 20 = 0\]

\[D = 16 + 240 = 256\]

\[x = \frac{4 - 16}{6} = - 2\ (не\ подходит)\]

\[x = \frac{4 + 16}{6} = \frac{10}{3} = 3\frac{1}{3}\]

\[Ответ:x = 3\frac{1}{3}.\]

\[4)\ \frac{x}{x^{2} - 4} - \frac{3x - 1}{x^{2} + x - 6} =\]

\[= \frac{2}{x² + 5x + 6}\]

\[x^{2} + x - 6 = (x + 6)(x - 2)\]

\[x_{1} + x_{2} = - 1,\ \ x_{1}x_{2} = - 6,\ \ \]

\[x_{1} = - 3,\ \ x_{2} = 2\]

\[x^{2} + 5x + 6 = (x + 3)(x + 2)\]

\[x_{1} + x_{2} = - 5,\ \ x_{1}x_{2} = 6,\ \ \]

\[x_{1} = - 3,\ \ x_{2} = - 2\]

\[x \neq 2;\ \ \ x \neq - 2;\ \ x \neq - 3\]

\[- 2x^{2} - 4x + 6 = 0\ \ \ \ |\ :( - 2)\]

\[x² + 2x - 3 = 0\]

\[x_{1} + x_{2} = - 2,\ \ x_{1}x_{2} = - 3,\]

\[\text{\ \ }x_{1} = - 3\ (не\ подходит),\ \ \]

\[x_{2} = 1\]

\[Ответ:x = 1.\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\mathbf{7}\mathbf{9}\mathbf{1}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ x² - 3x - 18 = 0\]

\[x_{1} + x_{2} = 3,\ \ x_{1} = - 3\]

\[x_{1} \cdot x_{2} = - 18,\ \ x_{2} = 6\]

\[x² - 3x - 18 = (x + 3)(x - 6)\]

\[2)\ x² + 5x - 14 = 0\]

\[x_{1} + x_{2} = - 5,\ \ x_{1} = - 7\]

\[x_{1} \cdot x_{2} = 14,\ \ x_{2} = 2\]

\[x^{2} + 5x - 14 = (x + 7)(x - 2)\]

\[3) - x^{2} + 3x + 4 = 0\]

\[x_{1} + x_{2} = 3,\ \ x_{1} = 4\]

\[x_{1} \cdot x_{2} = - 4,\ \ x_{2} = - 1\]

\[- x^{2} + 3x + 4 =\]

\[= - (x - 4)(x + 1) =\]

\[= (4 - x)(x + 1)\]

\[4)\ 5x² + 8x - 4 = 0\]

\[x_{1} + x_{2} = - \frac{8}{5},\ \ \]

\[x_{1} = - \frac{10}{5} = - 2\ \]

\[x_{1} \cdot x_{2} = - \frac{4}{5},\ \ x_{2} = \frac{2}{5}\ \]

\[5x^{2} + 8x - 4 =\]

\[= 5 \cdot (x + 2)\left( x - \frac{2}{5} \right) =\]

\[= (x + 2)(5x - 2)\]

\[5)\ 2a² - 3a + 1 = 0\]

\[a_{1} + a_{2} = \frac{3}{2},\ \ a_{1} = \frac{2}{2} = 1\]

\[a_{1} \cdot a_{2} = \frac{1}{2},\ \ a_{2} = \frac{1}{2}\]

\[2a^{2} - 3a + 1 =\]

\[= 2 \cdot (a - 1)\left( a - \frac{1}{2} \right) =\]

\[= (a - 1)(2a - 1)\]

\[6)\ 4b² - 11b - 3 = 0\]

\[b_{1} + b_{2} = \frac{11}{4},\ \ b_{1} = - \frac{1}{4}\]

\[b_{1} \cdot b_{2} = - \frac{3}{4},\ \ b_{2} = \frac{12}{4} = 3\]

\[4b^{2} - 11b - 3 =\]

\[= 4 \cdot \left( b + \frac{1}{4} \right)(b - 3) =\]

\[= (4b + 1)(b - 3)\]

\[7) - \frac{1}{4}x^{2} - 2x - 3 = 0\]

\[x_{1} + x_{2} = - 8,\ \ x_{1} = - 2\]

\[x_{1} \cdot x_{2} = 12,\ \ x_{2} = - 6\]

\[- \frac{1}{4}x^{2} - 2x - 3 =\]

\[= - \frac{1}{4} \cdot (x + 2)(x + 6)\]

\[8)\ 0,3m² - 3m + 7,5 = 0\]

\[m_{1} + m_{2} = \frac{3}{0,3} = 10,\ \ m_{1} = 5\]

\[m_{1} \cdot m_{2} = \frac{7,5}{0,3} = 25,\ \ m_{2} = 5\]

\[0,3m^{2} - 3m + 7,5 =\]

\[= 0,3 \cdot (m - 5)²\]

\[9)\ x² - 2x - 2 = 0\]

\[D = 4 + 8 = 12\]

\[x = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3}\]

\[x^{2} - 2x - 2 =\]

\[= (x - 1 - \sqrt{3})(x + 1 - \sqrt{3})\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам