\[\boxed{\mathbf{763\ (763)}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ y = \frac{x^{2} - 6x + 5}{x - 1}\]
\[x^{2} - 6x + 5 = 0\]
\[x_{1} + x_{2} = 6,\ \ x_{1} = 5\]
\[x_{1} \cdot x_{2} = 5,\ \ x_{2} = 1\]
\[x^{2} - 6x + 5 = (x - 5)(x - 1)\]
\[y = \frac{(x - 5)(x - 1)}{(x - 1)} = x - 5;\ \ \ \]
\[x \neq 1\]
\[y = x - 5,\ \ x \neq 1\ \]
\[x\] | \[2\] | \[3\] |
---|---|---|
\[y\] | \[- 3\] | \[- 2\] |
\[2)\ y = \frac{3x^{2} - 10x + 3}{x - 3} - \frac{x^{2} - 4}{x + 2} =\]
\[= 3x - 1 - x + 2 = 2x + 1\]
\[3x^{2} - 10x + 3 = 0\]
\[x_{1} + x_{2} = \frac{10}{3},\ \ x_{1} = \frac{1}{3}\]
\[x_{1} \cdot x_{2} = 1,\ \ x_{2} = \frac{9}{3} = 3\]
\[y = 2x + 1;\ \ \ x \neq 3;\ \ x \neq - 2\]
\[\boxed{\mathbf{7}\mathbf{6}\mathbf{3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{x_{1}}{x_{2}} = \frac{7}{3},\ \ 3x_{1} = 7x_{2},\ \ \]
\[x_{1} = \frac{7x_{2}}{3}\]
\[x^{2} + 20x + a = 0\]
\[x_{1} + x_{2} = - 20\]
\[\frac{7x_{2}}{3} + x_{2} = - 20\]
\[7x_{2} + 3x_{2} = - 60\]
\[10x_{2} = - 60\]
\[x_{2} = - 6\]
\[x_{1} = - 20 - x_{2} = - 20 + 6 =\]
\[= - 14\]
\[x_{1} \cdot x_{2} = a\]
\[- 6 \cdot ( - 14) = 84\]
\[Ответ:\ x_{1} = - 14;\ \ x_{2} = - 6;\ \ \]
\[a = 84.\]