\[\boxed{\mathbf{758\ (758).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{4x^{2} + x - 3}{x^{2} - 1} =\]
\[= \frac{(x + 1)(4x - 3)}{(x - 1)(x + 1)} = \frac{4x - 3}{x - 1}\]
\[4x^{2} + x - 3 =\]
\[= 4 \cdot (x + 1)\left( x - \frac{3}{4} \right) =\]
\[= (x + 1)(4x - 3)\]
\[x_{1} + x_{2} = - \frac{1}{4},\ \ \]
\[x_{1} = - \frac{4}{4} = - 1\]
\[x_{1} \cdot x_{2} = - \frac{3}{4},\ \ x_{2} = \frac{3}{4}\]
\[2)\ \frac{2y^{2} + 3y - 5}{y^{2} - 2y + 1} =\]
\[= \frac{(2y + 5)(y - 1)}{(y - 1)^{2}} = \frac{2y + 5}{y - 1}\]
\[2y^{2} + 3y - 5 =\]
\[= 2 \cdot \left( y + \frac{5}{2} \right)(y - 1) =\]
\[= (2y + 5)(y - 1)\]
\[y_{1} + y_{2} = - \frac{3}{2},\ \ y_{1} = - \frac{5}{2}\]
\[y_{1} \cdot y_{2} = - \frac{5}{2},\ \ y_{2} = \frac{2}{2} = 1\]
\[y^{2} - 2y + 1 = 0\]
\[y_{1} + y_{2} = 2,\ \ y_{1} = 1\]
\[y_{1} \cdot y_{2} = 1,\ \ y_{2} = 1\]
\[3)\ \frac{a^{2} + 5a + 4}{a^{2} - a - 20} =\]
\[= \frac{(a + 4)(a + 1)}{(a + 4)(a - 5)} = \frac{a + 1}{a - 5}\]
\[4)\ \frac{3 + 20b - 7b^{2}}{7b^{2} - 6b - 1} =\]
\[= \frac{(3 - b)(7b + 1)}{(7b + 1)(b - 1)} = \frac{3 - b}{b - 1}\]
\[- 7b^{2} + 20b + 3 =\]
\[= - 7 \cdot (b - 3)\left( b + \frac{1}{7} \right) =\]
\[= (3 - b)(7b + 1)\]
\[b_{1} + b_{2} = \frac{20}{7},\ \ b_{1} = \frac{21}{7} = 3\]
\[b_{1} \cdot b_{2} = - \frac{3}{7},\ \ b_{2} = - \frac{1}{7}\]
\[7b^{2} - 6b - 1 =\]
\[= 7 \cdot \left( b + \frac{1}{7} \right)(b - 1) =\]
\[= (7b + 1)(b - 1)\]
\[b_{1} + b_{2} = \frac{6}{7},\ \ b_{1} = - \frac{1}{7}\]
\[b_{1} \cdot b_{2} = - \frac{1}{7},\ \ b_{2} = \frac{7}{7} = 1\]
\[\boxed{\mathbf{7}\mathbf{5}\mathbf{8}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[x^{2} + bx - 17 = 0\]
\[x_{1} \cdot x_{2} = - 17\]
\[x_{1} + x_{2} = - b\]
\[x_{1} = - x_{2}\]
\[- x_{2}^{2} = - 17\]
\[x_{2}^{2} = 17\]
\[x_{2} = \sqrt{17};\ \ x_{1} = - \sqrt{17}\]
\[\sqrt{17} - \sqrt{17} = - b = 0\]
\[Ответ:b = 0.\]